Answer:
<h3>Q cuts the diagonal PA into 2 equal halves, since the diagonals of rhombus meet at right angles.</h3><h3>The value of x is 8.</h3>
Step-by-step explanation:
Given that Quadrilateral CAMP below is a rhombus. the length PQ is (x+2) units, and the length of QA is (3x-14) units
From the given Q is the middle point, which cut the diagonal PA into 2 equal halves.
By the definition of rhombus, diagonals meet at right angles.
Implies that PQ = QA
x+2 = 3x - 14
x-3x=-14-2
-2x=-16
2x = 16
dividing by 2 on both sides, we will get,

<h3>∴ x=8</h3><h3>Since Q cuts the diagonal PA into 2 equal halves, since the diagonals of rhombus meet at right angles we can equate x+2 = 3x-14 to find the value of x.</h3>
The line segment 


( since x=8)


<h3>∴

units</h3>
Answer:
Not sure if this is correct but I hope this helps :)
Answer:
I'm not 100% sure, but I think it's 3
So firstly, we have to find the LCD, or lowest common denominator, of 9 and 7. To do this, list the multiples of 9 and 7 and the lowest multiple they share is going to be your LCD. In this case, the LCD of 9 and 7 is 63. Multiply x^2/9 by 7/7 and 2y/7 by 9/9:

Next, add the numerators together, and your answer will be: 
That is true. it is part of natural numbers.