If I am reading this right, it looks like the 10, 3, 2, 1 are Adjustments and the Adjusted TB should equal the difference. Make sure you know how to add and subtract the debit and credit adjustments correctly.
TB +/- Adj = ATB
Answer:
it is a linear expression
3x + 6 = 48 (alternate angles are equal)
- 6
3x. = 42
÷3
x = 14 degrees
180-48 - 2y + 5y-9 =180
123 + 3y = 180
-123
3y = 57
÷3
y = 19 degrees
Explanation:
To find the last angle on the top straight line, do:
180 - (the 2 given angles).
So, 180 - (3x + 16, which is 48 due to alternate angles being equal). Then, minus the 2y.
(180 - 48 - 2y) & simplify => 132 - 2y
This gives you the equation for the missing angle on our top straight line.
Thus, co-interior angles add to 180. So, we add the new equation (132 - 2y) to 5y - 9.
Simplify
=> 123 + 3y (because - 2+5 =3)
and put it equal to 180. Solve for y
Hope this helps!
Answer:
There are 1% probability that the last person gets to sit in their assigned seat
Step-by-step explanation:
The probability that the last person gets to sit in their assigned seat, is the same that the probability that not one sit in this seat.
If we use the Combinatorics theory, we know that are 100! possibilities to order the first 99 passenger in the 100 seats.
LIke we one the probability that not one sit in one of the seats, we need the fraction from the total number of possible combinations, of combination that exclude the assigned seat of the last passenger. In other words the amount of combination of 99 passengers in 99 seats: 99!
Now this number of combination of the 99 passenger in the 99 sets, divide for the total number of combination in the 100 setas, is the probability that not one sit in the assigned seat of the last passenger.
P = 99!/100! = 99!/ (100 * 99!) = 1/100
There are 1% probability that the last person gets to sit in their assigned seat
Answer: 
Step-by-step explanation:
The first step to solve the exercise is to make the conversion from meters to centimeters.
Since
, then the dimensions of the wood board in centimeters are:

Now, you must find the Greatest Common Factor (GCF). The steps are:
- Descompose 100 and 60 into their prime factors:

- Multiply the commons with the lowest exponents:

Therefore, the side lenght of each square must be:
