1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balandron [24]
3 years ago
9

At one point the average price of regular unleaded gasoline was ​$3.43 per gallon. Assume that the standard deviation price per

gallon is ​$0.07 per gallon and use​ Chebyshev's inequality to answer the following. ​(a) What percentage of gasoline stations had prices within 4 standard deviations of the​ mean? ​(b) What percentage of gasoline stations had prices within 1.5 standard deviations of the​ mean? What are the gasoline prices that are within 1.5 standard deviations of the​ mean? ​(c) What is the minimum percentage of gasoline stations that had prices between ​$3.22 and ​$3.64​?
Mathematics
1 answer:
disa [49]3 years ago
7 0

Answer:

(a) The percentage of gasoline stations had prices within 4 standard deviations of the​ mean is 93.75%.

(b) The percentage of gasoline stations had prices within 1.5 standard deviations of the​ mean is 55.56%. The prices for this stations goes from $3.325 to $3.535.

(c) The minimum percentage of stations that had prices between ​$3.22 and ​$3.64 is 88.88%.

Step-by-step explanation:

The Chebyshev's inequality states that at least 1-(1/K^2) of data from a sample must fall within K standard deviations from the mean, being K any positive real number greater than one.

It can be expressed as

P(|X-\mu| \geq k\sigma)\leq \frac{1}{k^2}

In this problem, we have, for the gasoline price, a normal distribution with mean of 3.43 and standar deviation of 0.07.

(a) The percentage of gasoline stations had prices within 4 standard deviations of the​ mean is equal to <em>one less the percentage of gasoline stations that had prices out of 4 standard deviations of the​ mean:</em>

P(|X-\mu| \leq k\sigma)=1-P(|X-\mu| \leq k\sigma) \\\\1-P(|X-\mu| \leq k\sigma) \geq 1-\frac{1}{k^2} \\\\1-P(|X-\mu| \leq 4\sigma) \geq 1-\frac{1}{4^2}\\\\1-P(|X-\mu| \leq 4\sigma) \geq 1-1/16\\\\1-P(|X-\mu| \leq 4\sigma) \geq 0.9375

The percentage of gasoline stations had prices within 4 standard deviations of the​ mean is 93.75%.

(b) The percentage of gasoline stations had prices within 1.5 standard deviations of the​ mean is 55.56%.

P(|X-\mu| \leq k\sigma)\geq 1-\frac{1}{k^2}\\\\P(|X-\mu| \leq 1.5\sigma)\geq 1-\frac{1}{1.5^2}\\\\P(|X-\mu| \leq 1.5\sigma)\geq 0.5556\\

The prices for this stations goes from $3.325 to $3.535.

X=\mu\pm 1.5\sigma=3.43\pm 1.5*0.07=3.43 \pm 0.105\\\\X_{upper} =3.43+0.105=3.535\\X_{lower}=3.43-0.105=3.325

(c) To answer, we have to calculate k for this range of prices:

x=\mu\pm k\sigma\\\\k=\frac{|x-\mu|}{\sigma} =\frac{|3.64-3.43|}{0.07}=\frac{0.21}{0.07}=  3

For k=3, the Chebyshev's inequality states:

P(|X-\mu| \leq 3\sigma)\geq 1-\frac{1}{3^2}\\\\P(|X-\mu| \leq 3\sigma)\geq 0.8889

So, the minimum percentage of stations that had prices between ​$3.22 and ​$3.64 is 88.88%.

You might be interested in
3.14*16.8*16.8*16.9
vitfil [10]

Answer: 3.14 *16.8*16.8*16.9=14977.3478

14977.3478= 14,977.35

6 0
3 years ago
Kamilah’s weight has tripled since her first birthday. If w represents the amount Kamilah weighed on her first birthday, write a
S_A_V [24]

Answer:

3*w

Step-by-step explanation:

Kamilah now weighs the triple of what she weighed on her first birthday. That means we need to multiply the first weight by 3. As the first weight is w, she now weighs 3*w.

Another possible expression is to sum 3 times w, that is w + w + w (it's equal to 3*w).

8 0
3 years ago
PLSSS HELPPPP I WILLL GIVE YOU BRAINLIEST!!!!!!
noname [10]

Answer:

1. x = - 1 -y over 2

2. x = -4(2+y) over 3

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Find the equation of the line in gradient form that passes through the points (3,0) and (-2,4)
Aleksandr-060686 [28]

Answer:

y = (-4/5)x + 12/5

Step-by-step explanation:

Slope = (4-0)/(-2-3) = 4/-5 = -4/5

y = (-4/5)x + c

When x = 3, y = 0

0 = (-4/5)(3) + c

c = 12/5

y = (-4/5)x + 12/5

5y = -x + 12

5y + x = 12

4 0
3 years ago
The independent-samples t testResearch Scenario: A forensic psychologist has developed a new program that teaches empathy and po
8_murik_8 [283]

Answer:

Step-by-step explanation:

Hello!

The researcher developed a treatment to teach social skills to youth offenders. To test if the treatment is effective in increasing empathy compared to the standard treatment she randomly selected a group of 9 offenders and applied the new treatment and to another group of 9 randomly selected youth offenders, she applied the standard treatment. (Note: the data corresponds to two samples of 9 units each, so I've used those sizes to conduct the test)

At the end of the treatment, she administers BES to measure their empathy levels. Her claim is that the offenders that received the new treatment will have higher BES scores than those who received the standard treatment.

1) Using the records obtained for both groups, she  intends to conduct an independent t-test to analyze her claim.

X₁: BES results of a youth offender treated with the new treatment.

X₂: BES results of a youth offender treated with the standard treatment.

H₀: μ₁ = μ₂

H₁: μ₁ ≠ μ₂

α:0.05

test statistic

t_{H_0}= -0.32

p-value: 0.7517

The p-value is greater than the significance level so the decision is to not reject the null hypothesis. This means that at a 5% significance level you can conclude that there is no difference between the mean BES scores of the youth offenders treated with the new treatment and the mean BES score of  the youth offenders treated with the standard treatment. The new treatment doesn't increase the levels of social empathy of the youth offenders.

I hope this helps

(Box plot in attachment)

7 0
3 years ago
Other questions:
  • The Lopez family is moving to another city. An online budget estimator says their required monthly income will be $5,900. How mu
    12·1 answer
  • The improper fraction 24/7 is equivalent to 3 9/9
    10·2 answers
  • I been trying to figure the question out for the past 20 minutes and I can’t find the answer please help. (Question in picture)
    15·1 answer
  • What is the product <br><br> 3a(8a-6a)
    9·1 answer
  • Clark, Kasalyn, and Carson wrote an equation of a line with a slope of -5 that passes through the point at (-2,4). Is either of
    9·1 answer
  • The store bought them for $100 and marked them up 25% but no one was buying them! So the store discounted them 25%, what is the
    14·2 answers
  • Are these equal or not equal?
    14·2 answers
  • The graph of quadratic function f is shown on the grid. 5 -3 -12 5 u 6 Which of these best represents the domain of f? А -5.5 &l
    12·1 answer
  • Home Depot is delivering washing machines to buyers. The washing machines are rectangular prisms that measure 5 ft x 5 ft x 6 ft
    12·1 answer
  • A passenger plane flew from Texas to Frankfurt and back. The round trip is 9900 km.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!