Answer:−x2−6xy+8y2+9yz−12
Answer:
-2
Step-by-step explanation:
Answer:
y = 2cos5x-9/5sin5x
Step-by-step explanation:
Given the solution to the differential equation y'' + 25y = 0 to be
y = c1 cos(5x) + c2 sin(5x). In order to find the solution to the differential equation given the boundary conditions y(0) = 1, y'(π) = 9, we need to first get the constant c1 and c2 and substitute the values back into the original solution.
According to the boundary condition y(0) = 2, it means when x = 0, y = 2
On substituting;
2 = c1cos(5(0)) + c2sin(5(0))
2 = c1cos0+c2sin0
2 = c1 + 0
c1 = 2
Substituting the other boundary condition y'(π) = 9, to do that we need to first get the first differential of y(x) i.e y'(x). Given
y(x) = c1cos5x + c2sin5x
y'(x) = -5c1sin5x + 5c2cos5x
If y'(π) = 9, this means when x = π, y'(x) = 9
On substituting;
9 = -5c1sin5π + 5c2cos5π
9 = -5c1(0) + 5c2(-1)
9 = 0-5c2
-5c2 = 9
c2 = -9/5
Substituting c1 = 2 and c2 = -9/5 into the solution to the general differential equation
y = c1 cos(5x) + c2 sin(5x) will give
y = 2cos5x-9/5sin5x
The final expression gives the required solution to the differential equation.
Answer:
y = 1/4 x - 2
Step-by-step explanation:
To write the equation of a line, find from the line the slope and y-intercept. The y-intercept is where the line crosses the y-axis which here is at point (0,-2).
The slope of the line is found by writing a ratio between the vertical distance and the horizontal distance between points.
Slope is 1/4.
Substitute m = 1/4 and b = -2 into the slope intercept form y = mx + b.
y = 1/4 x - 2