1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
3 years ago
6

Wwiwwiwiwiwieqwertuttuyiueip

Mathematics
2 answers:
AleksAgata [21]3 years ago
6 0

Answer:

Rfrrrrtrffdrs wweftuewsrtyttdt

myrzilka [38]3 years ago
6 0
HearnsjgskgagkakfajfakgKgakfsogafia
You might be interested in
¿Cuál de las siguientes expresiones es equivalente a (5 ∙ 5 ∙ 5 ∙ 5)3?
frosja888 [35]

Answer:

translate: "Which of the following expressions is equivalent to (5 x 5 x 5 x 5)3?"

57???

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
A certain builder is selling five homes for the following prices: $157,000, $168,000, $195,000, $235,000, and $256,000. If the p
N76 [4]
Answer: $266,000

Explanation: $256,000 + $10,000 = $266,000
6 0
3 years ago
How do you solve 3x+7=x
vredina [299]
3x + 7 = x

First, subtract 3x from both sides. / Your problem should look like: 7 = x - 3x
Second, simplify x - 3x to -2x. / Your problem should look like: 7 = -2x
Third, divide both sides by -2. / Your problem should look like: \frac{7}{-2} = x
Fourth, simplify \frac{7}{-2} to -\frac{7}{2} / Your problem should look like: - \frac{7}{2} = x
Fifth, switch sides. / Your problem should look like: x = -\frac{7}{2}

Answer as fraction: -\frac{7}{2}
Answer as decimal: -3.5


8 0
3 years ago
Read 2 more answers
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Determine the domain of the function f(x)=√9+3x. Explain or show you arrived at your answer
liraira [26]
The domain is [-3,+infinity}
Or
X_>-3


Use the commutative property to reorder the terms, Separate the function into parts to determine the domain of each part, The domain of an even root function are all values of for which the radicand is positive or , The domain of a linear function is the set of all real numbers, Find the intersection
5 0
3 years ago
Other questions:
  • Is the binomial theorem and pascal's formula the same?
    13·1 answer
  • 13 is the same as 1÷3. <br> What is the exact quotient in decimal form of 1÷3?
    15·2 answers
  • Derive the equation of the parabola with a focus at (-5, 5) and a directrix of y = -1.
    5·1 answer
  • What is the equation in standard form of a parabola that models the values in the table
    13·1 answer
  • Como se lee éste numero: 0,08​
    10·1 answer
  • Find x, assume that any segment that appears to be tangent is tangent.​
    6·1 answer
  • Pa help po pls pls pls​
    15·1 answer
  • 1. A manufacturer of phones realizes a profit of $450 for each phone sold. However, defective phones cannot be
    11·1 answer
  • What is 3 ÷ 6 equal as a fraction
    11·2 answers
  • I don’t understand this problem
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!