Complete question :
Tom will rent a car for the weekend. He can choose one of two plans. The first plan has an initial fee of $57.98 and costs an additional $0.14 per mile driven. The second plan has an initial fee of $53.98 and costs an additional $0.16 per mile driven. How many miles would Tom need to drive for the two plans to cost the same?
Answer:
200 miles
Step-by-step explanation:
Let miles driven = x
First option :
57.98 + 0.14x
Second option :
53.98 + 0.16x
First option = second option
57.98 + 0.14 = 53.98 + 0.16x
57.98 - 53.98 = 0.16x - 0.14x
4 = 0.02x
x = 200
200 miles
The answer is only C and D
Answer:
First since 2 of the options ask for the width of BM lets solve for it using the Pythagorean theorem for both sides of point L:
a² + b² = c²
30² + b² = 50²
b² = 50² - 30²
b² = 1600
b = 40 Line BL = 40 ft
Since the ladder is 50 feet it is the same length on the other side as well
a² + b² = c²
40² + b² = 50²
b² = 50² - 40²
b² = 900
b = 30 line LM is 30 ft
SO line lm + line bl = 30 + 40 = 70 ft
A is true because ^
B isn't true because as we solved for earlier, BL is 40
C is true because line LM is in fact 30 ft as we solved for
D is not true because as we said earlier BM is 70
E is true because the same ladder was used on both sides of the street
Step-by-step explanation:
Expressed in scientific notation the answer would be 3.05 X 10^6