Answer:
c. electrical neutrality.
Explanation:
A <em>crystalline solid</em><em> possesses a rigid and long-range order; its atoms, molecules, or ions occupy specific positions.</em> The arrangement of such particles in a crystalline solid is such that the net attractive intermolecular forces are at their maximum.
Ionic crystals, particularly, have two important characteristics:
(1) They are composed of charged species.
(2) Anions and cations are generally quite different in size.
The forces holding the atoms together are electrostatic attractions. Examples of these types of crystals include NaCl, LiF, MgO, CaCO₃.
<u>Since they are composed of anions and cations, in stoichiometric amount, they are to be said electrically neutral.</u>
4.9 moles of salt are required to be added to 1 kg water to change the boiling temperature
by 5°C.
<h3>What is the moles of Salt required to change the temperature of water by 5°C?</h3>
Based on the given equation, the molality of the solution is calculated as follows:
- Molality = change in temperature/ Kb × I
Change in temperature = 5 °C
Kb = 0.51
i = 2
Molality = 5/0.51 × 2 = 4.9 molal
Also, Molality = moles/kg of water
Moles of salt = molality × kg of water
Moles of salt = 4.9 × 1 = 4.9 moles.
Therefore, 4.9 moles of salt are required to be added to 1 kg water to change the boiling temperature
by 5°C.
Learn more about molality at: brainly.com/question/9149034
#SPJ1
Yes , the chemist can answer if the compound in K2O or K2O2
The chemical formula and composition of both the compounds is entirely different. The compound K2O2 has an additional molecule of oxygen than K2O and hence will have have higher molecular mass.
In the compound K2O
molecular mass= 2x 39+16 =94
mass ratio of K in compound= 78/94 = 0.830
In the compound K2O2
molecular mass= 2x 39+16X2 =110
mass ratio of K in compound= 78/110 = 0.710
and hence by the required ratio while extracting K , the chemist may know if the compound is K20 or K2O2
If the ratio is anything different from 0.830 and 0.710 then the compund will be something different
#SPJ9
I'm pretty sure the answer is Pyroclastic flow
Answer:
![r = k . [CO] .[Cl_{2}]](https://tex.z-dn.net/?f=r%20%3D%20k%20.%20%5BCO%5D%20.%5BCl_%7B2%7D%5D)
Explanation:
Let´s consider the following reaction:
CO + Cl₂ ⇒ COCl₂
The general rate law is:
![r = k . [CO]^{m}. [Cl_{2}]^{n}](https://tex.z-dn.net/?f=r%20%3D%20k%20.%20%5BCO%5D%5E%7Bm%7D.%20%5BCl_%7B2%7D%5D%5E%7Bn%7D)
where,
r is the rate of the reaction
k is the rate constant
[CO] and [Cl₂] are the molar concentrations of each reactant
m and n are the reaction orders for each reactant
Since the reaction is first order in CO, m = 1. The overall order is the sum of all the individual orders. In this case, the overall order m + n = 2. Then,
m + n = 2
n = 2 - m = 2 - 1 = 1
The reaction is first order in Cl₂.
The rate law is:
![r = k . [CO]. [Cl_{2}]](https://tex.z-dn.net/?f=r%20%3D%20k%20.%20%5BCO%5D.%20%5BCl_%7B2%7D%5D)