The length of major arc ACB with angle measure of 325° and diameter of 10 feet is (325/36)π
<h3>What is an
equation?</h3>
An equation is an expression that shows the relationship between two or more numbers and variables.
angle of arc ACB = 360° - 35° = 325°
The length of major arc ACB = (325/360) * π * 10 = (325/36)π
The length of major arc ACB with angle measure of 325° and diameter of 10 feet is (325/36)π
Find out more on equation at: brainly.com/question/2972832
#SPJ1
Answer:
Check below, please
Step-by-step explanation:
Hello!
1) In the Newton Method, we'll stop our approximations till the value gets repeated. Like this

2) Looking at the graph, let's pick -1.2 and 3.2 as our approximations since it is a quadratic function. Passing through theses points -1.2 and 3.2 there are tangent lines that can be traced, which are the starting point to get to the roots.
We can rewrite it as: 

As for

3) Rewriting and calculating its derivative. Remember to do it, in radians.


For the second root, let's try -1.5

For x=-3.9, last root.

5) In this case, let's make a little adjustment on the Newton formula to find critical numbers. Remember their relation with 1st and 2nd derivatives.



For -1.2

For x=0.4

and for x=-0.4

These roots (in bold) are the critical numbers
Answer:
$6.22
Step-by-step explanation:
The ratio of the area of the <u>first figure</u> to the area of the <u>second figure</u> is 4:1
<h3>Ratio of the areas of similar figures </h3>
From the question, we are to determine the ratio of the area of the<u> first figure</u> to the area of the <u>second figure</u>
<u />
The two figures are similar
From one of the theorems for similar polygons, we have that
If the scale factor of the sides of <u>two similar polygons</u> is m/n then the ratio of the areas is (m/n)²
Let the base length of the first figure be ,m = 14 mm
and the base length of the second figure be, n = 7 mm
∴ The ratio of their areas will be



= 4:1
Hence, the ratio of the area of the <u>first figure</u> to the area of the <u>second figure</u> is 4:1
Learn more on Ratio of the areas of similar figures here: brainly.com/question/11920446