We can't write the product because there is no common input in the tables of g(x) and f(x).
<h3>Why you cannot find the product between the two functions?</h3>
If two functions f(x) and g(x) are known, then the product between the functions is straightforward.
g(x)*f(x)
Now, if we only have some coordinate pairs belonging to the function, we only can write the product if we have two coordinate pairs with the same input.
For example, if we know that (a, b) belongs to f(x) and (a, c) belongs to g(x), then we can get the product evaluated in a as:
(g*f)(a) = f(a)*g(a) = b*c
Particularly, in this case, we can see that there is no common input in the two tables, then we can't write the product of the two functions.
If you want to learn more about product between functions:
brainly.com/question/4854699
#SPJ1
Answer:
added!
Step-by-step explanation:
Note: When I use the double equal sign, I mean the triple bar used with modular arithmetic
10^3 = 1000 == -1 (mod 1001)
10^3 == -1 (mod 1001)
(10^3)^672 == (-1)^672 (mod 1001)
(10^(3*672) == 1 (mod 1001)
10^2016 == 1 (mod 1001)
10*10^2016 == 10*1 (mod 1001)
10^2017 == 10 (mod 1001)
Final Answer: 10