Answer:
![V = \left[\begin{array}{ccc}5&-1\end{array}\right]](https://tex.z-dn.net/?f=V%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We want to reflect this 2x1 vector on the line y = x.
To make this reflection we must use the following matrix:
![R=\left[\begin{array}{cc}0&1\\1&0\\\end{array}\right]](https://tex.z-dn.net/?f=R%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%261%5C%5C1%260%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Where R is known as the reflection matrix on the line x = y
Now perform the product of the vector <-1,5> x R.
![\left[\begin{array}{ccc}-1\\5\end{array}\right]x\left[\begin{array}{ccc}0&1\\1&0\end{array}\right]\\\\\\\left[\begin{array}{ccc}-1(0) +5(1)&-1(1)+5(0)\end{array}\right]\\\\\\\left[\begin{array}{ccc}5&-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%5C%5C5%5Cend%7Barray%7D%5Cright%5Dx%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C1%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%280%29%20%2B5%281%29%26-1%281%29%2B5%280%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%5Cend%7Barray%7D%5Cright%5D)
The vector matrix that represents the reflection of the vector <-1,5> across the line x = y is:
![V = \left[\begin{array}{ccc}5&-1\end{array}\right]](https://tex.z-dn.net/?f=V%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%5Cend%7Barray%7D%5Cright%5D)
Both equations are the same
<span>y=−4x+4 ----> y+4x=4,
so </span><span>consistent dependent</span>
Answer:
9/11
Step-by-step explanation:
4 1/2= 9/2=11/2n
so n =9/11
so 9/2=11/2*9/11
Answer:
(-1, 0)
Step-by-step explanation:
5 is the x value which is left and right, so you said u move left 6 units. Since the 5 is positive and left is negative; 5-6= -1. 3 is the y value which is up and down (vertical), so you said u move down 3 units, since the 3 is positive, when you move down that is negative; so 3-3=0.