Hey here is my ans.... Catch it.... ❤️ ❤️ ❤️ Pls mark as brainliest ❤️
Answer: the answer is B
Step-by-step explanation:
51.5
Answer:
<h2>2/5</h2>
Step-by-step explanation:
The question is not correctly outlined, here is the correct question
<em>"Suppose that a certain college class contains 35 students. of these, 17 are juniors, 20 are mathematics majors, and 12 are neither. a student is selected at random from the class. (a) what is the probability that the student is both a junior and a mathematics majors?"</em>
Given data
Total students in class= 35 students
Suppose M is the set of juniors and N is the set of mathematics majors. There are 35 students in all, but 12 of them don't belong to either set, so
|M ∪ N|= 35-12= 23
|M∩N|= |M|+N- |MUN|= 17+20-23
=37-23=14
So the probability that a random student is both a junior and social science major is
=P(M∩N)= 14/35
=2/5
Answer:
Step-by-step explanation:
138/8 = 17.25
Answer:
68% of an investment earning a return between 6 percent and 24 percent.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 15
Standard deviation = 9
How likely is it to earn a return between 6 percent and 24 percent?
6 = 15 - 1*9
6 is one standard deviation below the mean
24 = 15 + 1*9
24 is one standard deviation above the mean
By the empirical rule, there is a 68% of an investment earning a return between 6 percent and 24 percent.