1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikklg [1K]
3 years ago
6

HELP ASAP..GEOMETRY

Mathematics
2 answers:
MissTica3 years ago
7 0

Answer:

Here's what I get  

Step-by-step explanation:

Let the plane T be the xy-plane.

Points P, Q, and W are collinear but not coplanar with T.

It is possible for any of P, Q, and W to be on T. I have shown Q as a point on T.

If the lengths of PQ and PW are given, you can determine the length of QW.

PQ + QW = PW

        QW = PW - PQ  

tatuchka [14]3 years ago
5 0

Answer:

Step-by-step explanation:

Given that a plane T is there and 3 collinear points P,Q,W are there.

Part A;

PQW line lies has infinite points, , There is a chance that any one will be a point on the plane.

Part B) Since PQW are collinear

We find that PQ+QW = PW

Hence if PQ and QW are known we can easily find PW>

You might be interested in
Write an equation in point-slope form of the line that passes through (-1,-4) with slope -2.
andrew-mc [135]

Answer:

y+4=-2(x+1)

Step-by-step explanation:

y-y1=m(x-x1)

y-(-4)=-2(x-(-1))

y+4=-2(x+1)

4 0
3 years ago
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
A family visits a car show to research information on vehicles they might consider purchasing. Brochures for each vehicle provid
djyliett [7]

Answer:

Option A:

Number of seats

Step-by-step explanation:

A discrete quantitative variable is a variable that can be enumerated. This means that they are in units in which numbers can be assigned to and can be counted.

The number of seats present in the car can be counted. This feature can also be evaluated based on its numeral value, rather than its quality. In a simple form, the buyers feel that the more the number of seats present in the car, the more people it can carry. Hence, the family would love to buy a car with a good number of seats in it.

The other features in the options are rather continuous, qualitative, or boolean. Some of them are continuous because they cannot be counted e.g fuel efficiency. The others such as the presence of a sunroof can be seen as a boolean variable. (it can either be true or false)

Type of the transmission is a qualitative variable

7 0
3 years ago
What is the velocity of a wave with a frequency of 930 Hz and a wavelength of 0.50 m
erma4kov [3.2K]
Hi, thank you for posting your question here at Brainly.

To find the velocity of light or any electromagnetic wave, we use the equation: v = wavelength * frequency. Substituting,

v = 0.5 m * 930 1/s
v = 465 m/s
8 0
3 years ago
Read 2 more answers
a chef buys 5.46 pounds of ground turkey to make some casseroles. Each casserole requires 0.13 pound of turkey. How many cassero
mina [271]
The chef can make 42 casseroles no remainder
7 0
3 years ago
Other questions:
  • Why is the answer negative?
    11·1 answer
  • Simplify 27^2. _______ a0 Simplify 13^2. _______ a0
    12·2 answers
  • If the scale factor for the dilation shown is 3, which is the length of B’C’? 5/3 8 12 15
    13·2 answers
  • Simplify the fraction to lowest teems 10/25=
    12·2 answers
  • Solve this equation.<br><br> 23x−15x=x−1<br> A. x=11315<br> B. x=178<br> C. x=1715<br> D. x=78
    9·1 answer
  • Good Mornting hru?<br> 3(7)+4(6)=
    5·1 answer
  • What is point D FAST PLEASE
    15·2 answers
  • Please help me on here brainiest for best answer no wrong answers please
    8·1 answer
  • What is 52% of 475?<br><br> Help please
    7·2 answers
  • 2/7-3/8+2/5 Simplify​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!