.3 * 18 = 5.4. 18-5.4 = 12.6$
Or
.7 * 18 = 12.6$
Answer: Rational numbers have decimal expansions that repeat or terminate.
Step-by-step explanation:
The explanation of this is the non-terminating but repeating decimal expansion means that although the decimal representation has an infinite number of digits, there is a repetitive pattern to it. The rational number whose denominator is having a factor other than 2 or 5, will not have a terminating decimal number as the result.
Answer: 
Step-by-step explanation:
<u>Given expression</u>
![\large\boxed{\frac{12[30 - (9+4^2)]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%5Cfrac%7B12%5B30%20-%20%289%2B4%5E2%29%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
<u>Simplify the exponents</u>
![\large\boxed{=\frac{12[30 - (9+16)]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B30%20-%20%289%2B16%29%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
Simplify values in the parenthesis
![\large\boxed{=\frac{12[30 - 25]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B30%20-%2025%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
![\large\boxed{=\frac{12[5]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B5%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
<u>Simplify absolute values (all positive)</u>
![\large\boxed{=\frac{12[5]}{10-6 } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B5%5D%7D%7B10-6%20%7D%20%7D)
![\large\boxed{=\frac{12[5]}{4 } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B5%5D%7D%7B4%20%7D%20%7D)
<u>Simplify by division</u>
![\large\boxed{=3~[5]}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D3~%5B5%5D%7D)
<u>Simplify by multiplication</u>

Hope this helps!! :)
Please let me know if you have any questions
Answer:
f(x)=|1/2x|
Step-by-step explanation:
Answer:
Step-by-step explanation:
i) the given linear inequality is
ii) the first statement is NOT TRUE. the slope of the is
.
iii) the second statement is NOT TRUE. The area above the line is shaded.
iv) the third statement is NOT TRUE. (0,0) is not a solution to the inequality.
v) the fourth statement is TRUE.