Answer:
![R_{in}=0.2\dfrac{mL}{min}](https://tex.z-dn.net/?f=R_%7Bin%7D%3D0.2%5Cdfrac%7BmL%7D%7Bmin%7D)
![C(t)=\dfrac{A(t)}{30000}](https://tex.z-dn.net/?f=C%28t%29%3D%5Cdfrac%7BA%28t%29%7D%7B30000%7D)
![R_{out}= \dfrac{A(t)}{1500} \dfrac{mL}{min}](https://tex.z-dn.net/?f=R_%7Bout%7D%3D%20%5Cdfrac%7BA%28t%29%7D%7B1500%7D%20%5Cdfrac%7BmL%7D%7Bmin%7D)
![A(t)=300+2700e^{-\dfrac{t}{1500}},$ A(0)=3000](https://tex.z-dn.net/?f=A%28t%29%3D300%2B2700e%5E%7B-%5Cdfrac%7Bt%7D%7B1500%7D%7D%2C%24%20%20A%280%29%3D3000)
Step-by-step explanation:
The volume of the swimming pool = 30,000 liters
(a) Amount of chlorine initially in the tank.
It originally contains water that is 0.01% chlorine.
0.01% of 30000=3000 mL of chlorine per liter
A(0)= 3000 mL of chlorine per liter
(b) Rate at which the chlorine is entering the pool.
City water containing 0.001%(0.01 mL of chlorine per liter) chlorine is pumped into the pool at a rate of 20 liters/min.
(concentration of chlorine in inflow)(input rate of the water)
![=(0.01\dfrac{mL}{liter}) (20\dfrac{liter}{min})\\R_{in}=0.2\dfrac{mL}{min}](https://tex.z-dn.net/?f=%3D%280.01%5Cdfrac%7BmL%7D%7Bliter%7D%29%20%2820%5Cdfrac%7Bliter%7D%7Bmin%7D%29%5C%5CR_%7Bin%7D%3D0.2%5Cdfrac%7BmL%7D%7Bmin%7D)
(c) Concentration of chlorine in the pool at time t
Volume of the pool =30,000 Liter
![Concentration, C(t)= \dfrac{Amount}{Volume}\\C(t)=\dfrac{A(t)}{30000}](https://tex.z-dn.net/?f=Concentration%2C%20C%28t%29%3D%20%5Cdfrac%7BAmount%7D%7BVolume%7D%5C%5CC%28t%29%3D%5Cdfrac%7BA%28t%29%7D%7B30000%7D)
(d) Rate at which the chlorine is leaving the pool
(concentration of chlorine in outflow)(output rate of the water)
![= (\dfrac{A(t)}{30000})(20\dfrac{liter}{min})\\R_{out}= \dfrac{A(t)}{1500} \dfrac{mL}{min}](https://tex.z-dn.net/?f=%3D%20%28%5Cdfrac%7BA%28t%29%7D%7B30000%7D%29%2820%5Cdfrac%7Bliter%7D%7Bmin%7D%29%5C%5CR_%7Bout%7D%3D%20%5Cdfrac%7BA%28t%29%7D%7B1500%7D%20%5Cdfrac%7BmL%7D%7Bmin%7D)
(e) Differential equation representing the rate at which the amount of sugar in the tank is changing at time t.
![\dfrac{dA}{dt}=R_{in}-R_{out}\\\dfrac{dA}{dt}=0.2- \dfrac{A(t)}{1500}](https://tex.z-dn.net/?f=%5Cdfrac%7BdA%7D%7Bdt%7D%3DR_%7Bin%7D-R_%7Bout%7D%5C%5C%5Cdfrac%7BdA%7D%7Bdt%7D%3D0.2-%20%5Cdfrac%7BA%28t%29%7D%7B1500%7D)
We then solve the resulting differential equation by separation of variables.
![\dfrac{dA}{dt}+\dfrac{A}{1500}=0.2\\$The integrating factor: e^{\int \frac{1}{1500}dt} =e^{\frac{t}{1500}}\\$Multiplying by the integrating factor all through\\\dfrac{dA}{dt}e^{\frac{t}{1500}}+\dfrac{A}{1500}e^{\frac{t}{1500}}=0.2e^{\frac{t}{1500}}\\(Ae^{\frac{t}{1500}})'=0.2e^{\frac{t}{1500}}](https://tex.z-dn.net/?f=%5Cdfrac%7BdA%7D%7Bdt%7D%2B%5Cdfrac%7BA%7D%7B1500%7D%3D0.2%5C%5C%24The%20integrating%20factor%3A%20e%5E%7B%5Cint%20%5Cfrac%7B1%7D%7B1500%7Ddt%7D%20%3De%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%5C%5C%24Multiplying%20by%20the%20integrating%20factor%20all%20through%5C%5C%5Cdfrac%7BdA%7D%7Bdt%7De%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%2B%5Cdfrac%7BA%7D%7B1500%7De%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%3D0.2e%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%5C%5C%28Ae%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%29%27%3D0.2e%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D)
Taking the integral of both sides
![\int(Ae^{\frac{t}{1500}})'=\int 0.2e^{\frac{t}{1500}} dt\\Ae^{\frac{t}{1500}}=0.2*1500e^{\frac{t}{1500}}+C, $(C a constant of integration)\\Ae^{\frac{t}{1500}}=300e^{\frac{t}{1500}}+C\\$Divide all through by e^{\frac{t}{1500}}\\A(t)=300+Ce^{-\frac{t}{1500}}](https://tex.z-dn.net/?f=%5Cint%28Ae%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%29%27%3D%5Cint%200.2e%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%20dt%5C%5CAe%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%3D0.2%2A1500e%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%2BC%2C%20%24%28C%20a%20constant%20of%20integration%29%5C%5CAe%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%3D300e%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%2BC%5C%5C%24Divide%20all%20through%20by%20e%5E%7B%5Cfrac%7Bt%7D%7B1500%7D%7D%5C%5CA%28t%29%3D300%2BCe%5E%7B-%5Cfrac%7Bt%7D%7B1500%7D%7D)
Recall that when t=0, A(t)=3000 (our initial condition)
![3000=300+Ce^{0}\\C=2700\\$Therefore:\\A(t)=300+2700e^{-\dfrac{t}{1500}}](https://tex.z-dn.net/?f=3000%3D300%2BCe%5E%7B0%7D%5C%5CC%3D2700%5C%5C%24Therefore%3A%5C%5CA%28t%29%3D300%2B2700e%5E%7B-%5Cdfrac%7Bt%7D%7B1500%7D%7D)