<span>Given that Devorah
is filling a pool with a hose. The volume.H. In liters, of water coming
out of the hose in .m.minutes is given by the function H(m)=17.4m.
However it is a sunny day, and water is also evaporating from the pool.
Therefore,the volume ,V, in liters, of water in the pool m minutes after
devorah started filling it is given by V(m)=17m.
IfE be the volume of water, In Liters ,that has evaporated from the pool m minutes after devorah started filling it .
The formula for E(m) in terms of H(m) and V(m) is given by
E(m) = H(m) - V(m)
And
The formula for E(m) in terms of m is given by
E(m) = 17.4m - 17m = 0.4m</span>
55.76-50.38=4.38 inches of rainfall
Your welcome =)
difference= subtraction
Answer:
i think its 18.59
Step-by-step explanation:
Answer:
The value of Car B will become greater than the value of car A during the fifth year.
Step-by-step explanation:
Note: See the attached excel file for calculation of beginning and ending values of Cars A and B.
In the attached excel file, the following are used:
Annual Depreciation expense of Car A = Initial value of Car A * Depreciates rate of Car A = 30,000 * 20% = 6,000
Annual Depreciation expense of Car B from Year 1 to Year 6 = Initial value of Car B * Depreciates rate of Car B = 20,000 * 15% = 3,000
Annual Depreciation expense of Car B in Year 7 = Beginning value of Car B in Year 7 = 2,000
Conclusion
Since the 8,000 Beginning value of Car B in Year 5 is greater than the 6,000 Beginning value of Car A in Year 5, it therefore implies that the value Car B becomes greater than the value of car A during the fifth year.