Answer:
ind the absolute value vertex. In this case, the vertex for y=−|x|−2 is (0,−2).
(0,−2)
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(−∞,∞)
Set-Builder Notation: {x|x ∈ R}
For each x value, there is one y value. Select few x values from the domain. It would be more useful to select the values so that they are around the x value of the absolute value vertex.
x y
−2 −4
−1 −3
0 −2
1 −3
2 −4
Step-by-step explanation:
<u>The commutative property is when you can change the order and it will be the same answer.</u>
<u>6 + 8 + 7 = 7 + 8 + 6</u> would be your answer.
There is no help me to do this sorry
Answer:
x - 6
Step-by-step explanation:
A = L x W
A / L = W
x^2-11x+30 / x -5 = W (Simplify the numerator)
(x - 6) x ( x - 5) / x - 5 = W (Cancel the similar ones which is (x - 5) )
x - 6 = W
Hope that helps
Answer:
The given sequence 6, 7, 13, 20, ... is a recursive sequence
Step-by-step explanation:
As the given sequence is

- It cannot be an arithmetic sequence as the common difference between two consecutive terms in not constant.
As
, 
As d is not same. Hence, it cannot be an arithmetic sequence.
- It also cannot be a geometrical sequence and exponential sequence.
It cannot be geometric sequence as the common ratio between two consecutive terms in not constant.
As
,
, 
As r is not same, Hence, it cannot be a geometric sequence or exponential sequence. As exponential sequence and geometric sequence are basically the same thing.
So, if we carefully observe, we can determine that:
- The given sequence 6, 7, 13, 20, ... is a recursive sequence.
Please have a close look that each term is being created by adding the preceding two terms.
For example, the sequence is generated by starting from 1.

and

for n > 1.
<em>Keywords: sequence, arithmetic sequence, geometric sequence, exponential sequence</em>
<em>Learn more about sequence from brainly.com/question/10986621</em>
<em>#learnwithBrainly</em>