1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
In-s [12.5K]
4 years ago
10

Twenty more than half a number of 70.what is the number

Mathematics
2 answers:
Shkiper50 [21]4 years ago
6 0
The answer is 55 hope this helps
Dima020 [189]4 years ago
3 0
70 divided by half equals 35 (70/2= 35)
35+20= 55
Hope this helps!
You might be interested in
For the function defined by f(t)=2-t, 0≤t<1, sketch 3 periods and find:
Oksi-84 [34.3K]
The half-range sine series is the expansion for f(t) with the assumption that f(t) is considered to be an odd function over its full range, -1. So for (a), you're essentially finding the full range expansion of the function

f(t)=\begin{cases}2-t&\text{for }0\le t

with period 2 so that f(t)=f(t+2n) for |t| and integers n.

Now, since f(t) is odd, there is no cosine series (you find the cosine series coefficients would vanish), leaving you with

f(t)=\displaystyle\sum_{n\ge1}b_n\sin\frac{n\pi t}L

where

b_n=\displaystyle\frac2L\int_0^Lf(t)\sin\frac{n\pi t}L\,\mathrm dt

In this case, L=1, so

b_n=\displaystyle2\int_0^1(2-t)\sin n\pi t\,\mathrm dt
b_n=\dfrac4{n\pi}-\dfrac{2\cos n\pi}{n\pi}-\dfrac{2\sin n\pi}{n^2\pi^2}
b_n=\dfrac{4-2(-1)^n}{n\pi}

The half-range sine series expansion for f(t) is then

f(t)\sim\displaystyle\sum_{n\ge1}\frac{4-2(-1)^n}{n\pi}\sin n\pi t

which can be further simplified by considering the even/odd cases of n, but there's no need for that here.

The half-range cosine series is computed similarly, this time assuming f(t) is even/symmetric across its full range. In other words, you are finding the full range series expansion for

f(t)=\begin{cases}2-t&\text{for }0\le t

Now the sine series expansion vanishes, leaving you with

f(t)\sim\dfrac{a_0}2+\displaystyle\sum_{n\ge1}a_n\cos\frac{n\pi t}L

where

a_n=\displaystyle\frac2L\int_0^Lf(t)\cos\frac{n\pi t}L\,\mathrm dt

for n\ge0. Again, L=1. You should find that

a_0=\displaystyle2\int_0^1(2-t)\,\mathrm dt=3

a_n=\displaystyle2\int_0^1(2-t)\cos n\pi t\,\mathrm dt
a_n=\dfrac2{n^2\pi^2}-\dfrac{2\cos n\pi}{n^2\pi^2}+\dfrac{2\sin n\pi}{n\pi}
a_n=\dfrac{2-2(-1)^n}{n^2\pi^2}

Here, splitting into even/odd cases actually reduces this further. Notice that when n is even, the expression above simplifies to

a_{n=2k}=\dfrac{2-2(-1)^{2k}}{(2k)^2\pi^2}=0

while for odd n, you have

a_{n=2k-1}=\dfrac{2-2(-1)^{2k-1}}{(2k-1)^2\pi^2}=\dfrac4{(2k-1)^2\pi^2}

So the half-range cosine series expansion would be

f(t)\sim\dfrac32+\displaystyle\sum_{n\ge1}a_n\cos n\pi t
f(t)\sim\dfrac32+\displaystyle\sum_{k\ge1}a_{2k-1}\cos(2k-1)\pi t
f(t)\sim\dfrac32+\displaystyle\sum_{k\ge1}\frac4{(2k-1)^2\pi^2}\cos(2k-1)\pi t

Attached are plots of the first few terms of each series overlaid onto plots of f(t). In the half-range sine series (right), I use n=10 terms, and in the half-range cosine series (left), I use k=2 or n=2(2)-1=3 terms. (It's a bit more difficult to distinguish f(t) from the latter because the cosine series converges so much faster.)

5 0
4 years ago
Solve each equation. I don't know this
MArishka [77]
1.(2x - 3)(x + 7) = 0
   2x^{2} + 14x - 3x - 21 = 0                                  
   2x^{2} + 11x - 21 = 0                       
  
   x = \frac{-11 +/- \sqrt{11^{2} - 4(2)(-21)}}{2(2)}                 
  
   x = \frac{-11 +/- \sqrt{121 + 168}}{4}
  
   x = \frac{-11 +/- \sqrt{289}}{4}
  
   x = \frac{-11 +/- 17}{4}
  
   x = -2.75 +/- 4.25
   x = -2.75 + 4.25                     x = -2.75 - 4.25
   x = 1.5                                                   <u></u>x = -7
----------------------------------------------------------------------------------------------------------  2.8x(2x - 5) = 0
   8x(2x) - 8x(5) = 0
   16x^{2} - 40x = 0
   16x^{2} - 4x + 0 = 0
  
   x = \frac{-(-40) +/- \sqrt{(-40)^{2} - 4(16)(0)}}{2(16)}
  
   x = \frac{40 +/- \sqrt{1600 - 0}}{32}
  
   x = \frac{40 +/- \sqrt{1600}}{32}
  
   x = \frac{40 +/- 40}{32}
  
   x = 1.25 +/- 1.25
   x = 1.25 + 1.25                                  x = 1.25 - 1.25
   x = 2.5                                               x = 0
----------------------------------------------------------------------------------------------------------
3.x^{2} + 3x - 10 = 0
  
   x = \frac{-3 +/- \sqrt{3^{2} - 4(1)(-10)}}{2(1)}
  
   x = \frac{-3 +/- \sqrt{9 + 40}}{2}
  
   x = \frac{-3 +/- \sqrt{49}}{2}
  
   x = \frac{-3 +/- {7}}{2}
  
   x = -1.5 +/- 3.5
   x = -1.5 + 3.5               x = -1.5 - 3.5
   x = 2                             x = -5
----------------------------------------------------------------------------------------------------------
4. x^{2} = 13x - 36
    x^{2} - 13x + 36 = 13x - 13x - 36 + 36
    x^{2} - 13x + 36 = 0
   
    x = \frac{-(-13) +/- \sqrt{(-13)^{2} - 4(1)(36)}}{2(1)}

   
    x = \frac{13 +/- \sqrt{169 - 144}}{2}
  
    x = \frac{13 +/- \sqrt{25}}{2}
 
    x = \frac{13 +/- 5}{2}

    x = 6.5 +/- 2.5
    x = 6.5 + 2.5                     x = 6.5 - 2.5
    x = 9                                 x = 4
----------------------------------------------------------------------------------------------------------
5.3x^{2} - 7x + 2 = 0
  
   x = \frac{-(-7) +/- \sqrt{(-7)^{2} - 4(1)(2)}}{2(3)}

   x = \frac{7 +/- \sqrt{49 - 8}}{6}

   x = \frac{7 +/- \sqrt{41}}{6}

   x = \frac{7 +/- 6.403124237432849}{6}
 
   x = 1.167+/- 1.06718737290547
   x = 1.67 + 1.06718737290547              x = 1.167 - 1.06718737290547
   x = 2.73718737290547                         x = 0.60281262709453
----------------------------------------------------------------------------------------------------------
6.10x^{2} - 10x + 9 = 5x^{2} + 4x + 1
   10x^{2} - 5x^{2} - 10x + 10x + 9 - 1 = 5x^{2} - 5x^{2} + 4x + 10x + 1 - 1
   5x^{2} + 8 = 14x
   5x^{2} - 14x + 8 = 14x - 14x
   <u />5x^{2} - 14x + 8 = 0
  
   x = \frac{-(-14) + \sqrt{(-14)^{2} - 4(5)(8)}}{2(5)}
  
   x = \frac{14 +/- \sqrt{196 - 160}}{10}
  
   x = \frac{14 +/- \sqrt{36}}{10}.
  
   x = \frac{14 +/- 6}{10}
  
   x = 1.4 +/- 0.6
   x = 1.4 + 0.6                x = 1.4 - 0.6
   <u />x = 2                            x = 0.8
 
 
5 0
4 years ago
What is the value of y in the formula shown when x = 4 5 ? y = 4 x + √x + 0.2 - 5x
Vika [28.1K]

Answer:

-38.1

Step-by-step explanation:

180 + 6.7 + 0.2 - 225

186.9 - 225

-38.1

8 0
3 years ago
The Office Store sells printer paper. Last week, the store sold 324 packs of white paper, which was 40% of
andreyandreev [35.5K]

Answer:

9

Step-by-step explanation:

99

8 0
3 years ago
A friend has a 82% average before the final exam for a course. That score includes everything but the final, which counts for 30
Damm [24]
So you want to set up an equation for a weighted average. You know the final is 30% of the grade, so everything else is 70%. This gives you:

(Final)(.30) + (other grades)(.70) = course grade

The best grade the student can get would be if they get a hundred on the final, since that’s the best score you can make on the final. Then,

(100)(.30) + (82)(.70) = course grade
30 + 57.4 = course grade = 87.4 Which, If you round, the student would get an 87.

For the last part, we use the same equation, just filling in different parts.

(Final)(.30) + (other grades)(.70) = course grade

This time, we don’t know the grade for the final, but we know the course grade.

(Final)(.30) + (82)(.70) = 75
(Final)(.30) + 57.4 = 75
(Final)(.30) = 17.6
Final = (17.6)/(.30)
Final = 58.667 Which is approx a 59.
4 0
3 years ago
Other questions:
  • Show all of your work, even though the question may not explicitly remind you to do so. Clearly label any functions, graphs, tab
    8·1 answer
  • Point O is the centre of the circle. What is the value of x? (Assume that lines that appear to be tangent are tangent)
    10·1 answer
  • 6z+1–3z<br><br> i need help plzzzzzzzzzzzz
    6·1 answer
  • Jessie pays $2.19 each month for an annual subscription to sewing magazine she receives 12 magazines annually how much does she
    7·2 answers
  • Twelve of the 30 students in the class were boys if each students name is placed in the hat and one name is drawn what is the pr
    12·1 answer
  • Matt and Chris leave their uncle's house in Phoenix at the same time. Matt drives west on I-60 at a speed of 76 miles per hour.
    5·1 answer
  • Simplify 2x4 a_3 =16a÷8 1_a​
    9·1 answer
  • a living room floor consists of an area and hardwood. the area of the rug is 187 square feet. what is the area of the entire liv
    7·1 answer
  • Find the scale factor for the dilation shown.
    11·1 answer
  • Determine the equation of the parabola shown in the diagram in factored form. (check picture below)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!