You have 10 slices of cake, you and your friends Jerry, George, Martha, and Jenny ( just an example ) eat 2 slices of cake.
A more real life one would be:
You have 6 bills to pay off, then two more come in, you only pay off 4,
( I hope this helped, I'm sorry if any of this is wrong:) )
Answer:
Total cost of Theo's purchases in terms of k and p=2.49(k + p) + 5.99
Step-by-step explanation:
Cost of k key chain=$2.49
Cost of p photo frames=$2.49
Cost of a T-shirt=$5.99
Total cost of all items=cost of k key chain + cost of p photo frame + cost of The shirt
=2.49k + 2.49p + 5.99
Factorise
2.49 is common to both k and p
=2.49(k + p) + 5.99
Total cost of Theo's purchases in terms of k and p=2.49(k + p) + 5.99
Answer:
Matrix multiplication is not conmutative
Step-by-step explanation:
The matrix multiplication can be performed if the number of columns of the first matrix is equal to the number of rows of the second matrix
Let A with dimension mxn and B with dimension nxp represent two matrix
The multiplication of A by B is a matrix C with dimension mxp, but the multiplication of B by A is can't be calculated because the number of columns of B is not the number of rows of A. Therefore, you can notice that is not conmutative in general.
But even if the multiplication of AB and BA is defined (For example if A and B are squared matrix of 2x2) the multiplication is not necessary conmutative.
The matrix multiplication result is a matrix which entries are given by dot product of the corresponding row of the first matrix and the corresponding column of the second matrix:
![A=\left[\begin{array}{ccc}a11&a12\\a21&a22\end{array}\right]\\B= \left[\begin{array}{ccc}b11&b12\\b21&b22\end{array}\right]\\AB = \left[\begin{array}{ccc}a11b11+a12b21&a11b12+a12b22\\a21b11+a22b21&a21b12+a22b22\end{array}\right]\\\\BA=\left[\begin{array}{ccc}b11a11+b12a21&b11a12+b12a22\\b21a11+b22ba21&b21a12+b22a22\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da11%26a12%5C%5Ca21%26a22%5Cend%7Barray%7D%5Cright%5D%5C%5CB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db11%26b12%5C%5Cb21%26b22%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da11b11%2Ba12b21%26a11b12%2Ba12b22%5C%5Ca21b11%2Ba22b21%26a21b12%2Ba22b22%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CBA%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db11a11%2Bb12a21%26b11a12%2Bb12a22%5C%5Cb21a11%2Bb22ba21%26b21a12%2Bb22a22%5Cend%7Barray%7D%5Cright%5D)
Notice that in general, the result is not the same. It could be the same for very specific values of the elements of each matrix.
It would be A because this sequence has a factor of 2 between each number
It is undefined when the denominator is 0