Answer:
DE.......................................
<u> Allele frequencies to change from one generation to the next.-</u>
<u>B. </u><u>Mutation</u><u>; C. Random genetic drift; D. </u><u>Migration</u><u>; F. Natural selection</u>
- Selection, mutation, migration, and genetic drift are the mechanisms that effect changes in allele frequencies.
- When one or more of these forces are acting, the population violates Hardy-Weinberg assumptions, and evolution occurs.
Why do allele frequencies change from one generation to the next?
Random selection: Allele frequencies may fluctuate from one generation to the next when people with particular genotypes outlive those with different genotypes.
No mutation: Allele frequencies may fluctuate from one generation to the next if new alleles are produced via mutation or if alleles mutate at different rates.
What are 5 factors that cause changes in allele frequency?
- A population, a collection of interacting individuals of a single species, exhibits a change in allele frequency from one generation to the next due to five main processes.
- These include natural selection, gene flow, genetic drift, and mutation.
Learn more about allele frequency
brainly.com/question/7719918
#SPJ4
<u>The complete question is -</u>
Identify the evolutionary forces that can cause allele frequencies to change from one generation to the next. Check all that apply
A. Inbreeding
B. Mutation,
C. random genetic drift
D. migration
E. extinction
F. natural selection
Answer:
four basic operations of elementary arithmetic.
The limiting factor on the population of Arctic foxes is density-dependent. In population ecology, density-dependent processes happen when population growth rates are regulated by the density of a population. Density-dependent factors are factors where the effects on the size or growth of a population vary with the density of the population itself.