Answer:
The answer is 4.2
Step-by-step explanation:
100%-40%=
60%
60%*7=
4.2
:)
Answer:
I can't see the triangles give me the coordinates
Step-by-step explanation:
Answer:
![p(t) = \frac{9t^{3} + 729t - 1}{e^{t}(t^{2} + 81) }](https://tex.z-dn.net/?f=p%28t%29%20%3D%20%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Be%5E%7Bt%7D%28t%5E%7B2%7D%20%2B%2081%29%20%7D)
g(t) = 0
And
The differential equation
is linear and homogeneous
Step-by-step explanation:
Given that,
The differential equation is -
![9ty + e^{t}y' = \frac{y}{t^{2} + 81 }](https://tex.z-dn.net/?f=9ty%20%2B%20e%5E%7Bt%7Dy%27%20%3D%20%5Cfrac%7By%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D)
![e^{t}y' + (9t - \frac{1}{t^{2} + 81 } )y = 0\\e^{t}y' + (\frac{9t(t^{2} + 81 ) - 1}{t^{2} + 81 } )y = 0\\e^{t}y' + (\frac{9t^{3} + 729t - 1}{t^{2} + 81 } )y = 0\\y' + [\frac{9t^{3} + 729t - 1}{e^{t}(t^{2} + 81) } ]y = 0](https://tex.z-dn.net/?f=e%5E%7Bt%7Dy%27%20%2B%20%289t%20-%20%5Cfrac%7B1%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Ce%5E%7Bt%7Dy%27%20%2B%20%28%5Cfrac%7B9t%28t%5E%7B2%7D%20%2B%2081%20%29%20-%201%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Ce%5E%7Bt%7Dy%27%20%2B%20%28%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Cy%27%20%2B%20%5B%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Be%5E%7Bt%7D%28t%5E%7B2%7D%20%2B%2081%29%20%7D%20%5Dy%20%3D%200)
By comparing with y′+p(t)y=g(t), we get
![p(t) = \frac{9t^{3} + 729t - 1}{e^{t}(t^{2} + 81) }](https://tex.z-dn.net/?f=p%28t%29%20%3D%20%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Be%5E%7Bt%7D%28t%5E%7B2%7D%20%2B%2081%29%20%7D)
g(t) = 0
And
The differential equation
is linear and homogeneous.
Answer:
Answer is A
Step-by-step explanation:
You can add, subtract, and multiply them. These three operations obey the rules for integers. There's a polynomial division algorithm that fills formally the same role as the usual division algorithm for integers. Polynomials added to, subtracted from, or multiplied by other polynomials yield only polynomials. Likewise, integers added to, subtracted from, or multiplied by other integers yield only integers.