Answer:
60
Explanation:
Translation -
A book weighing 12 N is balanced on a table. Knowing that the static friction coefficient is 0.5, how much is the friction force worth?
Friction force is
f = u * n
f = 0.5 * 12N
f = 60
A. Closed. This is because the circuit can flow without interruption.
Answer:
11.23%
Explanation:
Lets take
Speed of man in still water =u= 1.73 m/s
Speed of flow of water = v=0.52 m/s
When swims in downward direction then speed of man = u + v
When swims in upward direction then speed of man = u - v
Lets time taken by man when he swims in downward direction is
and when he swims in downward direction is
Lets distance is d and it will be remain constant in both the case




Time taken in still water
2 d= t x 1.73
t=1.15 x d sec


total time in current = 0.82 +0.44 d=1.26 d sec
So the percentage time

Percentage time =11.32%
So it will take 11.32% more time as compare to still current.
Answer:
<em>Force B</em>
Explanation:
<u>Friction Force
</u>
It's a force that appears when an object is tried to move on a rough surface. There are two cases: when the object is at rest, we have the friction static coefficient and when the object is already moving, we have the dynamic coefficient. The static coefficient is usually greater than the second because it's harder to overcome the friction when the object is at rest.
We are told that John pushes the bed to the left with enough force to overcome the force of friction. If the movement is intended to be to the left side, the friction force appears to the right, since it always opposes to the movement. Thus the force B is the one who represents the friction force in this situation
The answer is 8/3. You have to simplify each side and isolate the variable.