Answer:
5080.86m
Explanation:
We will divide the problem in parts 1 and 2, and write the equation of accelerated motion with those numbers, taking the upwards direction as positive. For the first part, we have:


We must consider that it's launched from the ground (
) and from rest (
), with an upwards acceleration
that lasts a time t=9.7s.
We calculate then the height achieved in part 1:

And the velocity achieved in part 1:

We do the same for part 2, but now we must consider that the initial height is the one achieved in part 1 (
) and its initial velocity is the one achieved in part 1 (
), now in free fall, which means with a downwards acceleration
. For the data we have it's faster to use the formula
, where d will be the displacement, or difference between maximum height and starting height of part 2, and the final velocity at maximum height we know must be 0m/s, so we have:

Then, to get
, we do:



And we substitute the values:

Answer:
1995 and 2000 , 4 trillions
Explanation:
Answer:
b
Explanation:
The space shuttle, in circular orbit around the Earth, collides with a small asteroid which ends up in the shuttle's storage bay.
This form of collision is called inelastic collision. And inelastic collision momentum is conserved but the kinetic energy is not conserved. Hence the correct option is b. only momentum is conserved.
Answer:
she's wrong because she is and there it doesn't say she's right
D) The speed of a wave slows as it travels at different speed in different media.