The easiest way to find percent is to make the percent into a decimal and multiply. Move the decimal to places to the left to make 4.30, and multiplied by 90 equals 387, so 430 percent of 90 is 387.
Answer:
43.75 ft²
Step-by-step explanation:
= (l√(w/2)² + h²) + (w√(l/2)² + h²)
l & w become 3.5, and h becomes 6.
<em />
<em> </em>= (3.5√(3.5/2)² + 6²) + (3.5√(3.5/2)² + 6²)
<em>Step 1:Because this is a square pyramid, what you see above essentially becomes what you see below.</em>
<em />
= 2(3.5√(3.5/2)² + 6²)
<em>Step 2: Divide 3.5 by 2 to get 1.75.</em>
<em />
<em> </em>= 2(3.5√1.75² + 6²)
<em>Step 3: Square both 1.75 and 6 to get 3.0625 and 36 respectively.</em>
= 2(3.5√3.0625 + 36)
<em>Step 4: Add 3.0625 and 36 to get 39.0625.</em>
<em />
= 2(3.5√39.0625)
<em>Step 5: The square root of 39.0625 is 6.25.</em>
<em />
<em> </em>= 2(3.5 * 6.25)
<em>Step 6: Multiply 3.5 by 6.25 to get 21.875.</em>
<em />
= 2(21.875)
<em>Step 7: Multiply 2 by 21.875 to get 43.75.</em>
<em />
= 43.75 ft²
The lateral area of this pyramid is 43.75 ft².
<em />
<em />
Answer:
(a) 0.4242
(b) 0.0707
Step-by-step explanation:
The total number of ways of selecting 8 herbs from 12 is

(a) If 2 herbs are selected, then there are 8 - 2 = 6 herbs to be selected from 12 - 8 = 10. The number of ways of the selection is then

Note that this is the number of ways that both are included. We would have multiplied by 2! if any of them were to be included.
The probability = 
(b) If 5 herbs are selected, then there are 8 - 5 = 3 herbs to be selected from 12 - 5 = 7. The number of ways of the selection is then

This is the number of ways that both are included. We would have multiplied by 5! if any of them were to be included. In that case, our probability will exceed 1; this implies that certainly, at least, one of them is included.
The probability = 
Right angle because that has 90 degree angle
Using the cosine double angle formula,

(Note I took the positive case since
terminates in the first quadrant)
Using the Pythagorean identity,

(Note I took the positive case since
terminates in the first quadrant)