Answer:
The answer is given below.
Explanation:
We will consider the acid as HA and will set up an ICE table with the equilibrium dissociation of α.
AT pH 2.4 the initial H+ concentration will be 3.98^10-3 M
HA → H+ + A-
Initial concentration: 0.1 → 3.98 ^10-3 + 0
equilibrium concentration: 0.1(1-α) → 3.98 * 10-3 + 0.1α 0.1α
pKa of chloroacetic acid is 2.9
-log(Ka) = 2.9
Ka = 1.26 * 10-3
From the equation, Ka = [H+] * [A-] / [HA]
1.26 * 10-3 = (3.98 * 10-3 + 0.1α )* 0.1α / 0.1(1-α)
Since α<<1, we assume 1-α = 1
Solving the equation, we have: α = 0.094
Since this is the fraction of acid that has dissociated, we can say that % of base form = 100 * α= 9.4%
Explanation:
Ionic bonds
Covalent bond
Vanderwaal force of attraction
16 protons
Explanation: S2-: proton number 16; nucleon number 32
There are 16 protons (from the proton number). If it was a neutral atom, there would be 16 electrons.
SPR can be used in order to do real time monitoring and to evaluate the advancement of compounds.
<h3>Why should we use SPR?</h3>
SPR provide information to evaluate whether or not compounds should advance to the next stage of investigation. It also provides real-time monitoring.
So we can conclude that SPR can be used in order to do real time monitoring and to evaluate the advancement of compounds.
Learn more about monitoring here: brainly.com/question/13163394
#SPJ1