Answer:
An example of elevation is a plane flying at 36,000 feet above the ground. An example of elevation is a pope being raised to the position of saint. An example of elevation is a ballet dancer leaping three feet in the air. ... At 8,850 m (29,028 ft), the summit of Mount Everest is the highest elevation on Earth.
Answer:
Yes
Explanation:
Because they are lighter than water
160 g of SO3 are needed to make 400 g of 49% H2SO4.
<h3>How many grams of SO3 are required to prepare 400 g of 49% H2SO4?</h3>
The equation of the reaction for the formation of H2SO4 from SO3 is given below as follows:

1 mole of SO3 produces 1 mole of H2SO4
Molar mass of SO3 = 80 g/mol
Molar mass of H2SO4 = 98 g/mol
80 g of SO3 are required to produce 98 og 100%H2SO4
mass of SO3 required to produce 400 g of 100 %H2SO4 = 80/98 × 400 = 326.5 g of SO3
Mass of SO3 required to produce 49% of 400 g H2SO4 = 326.5 × 49% = 160 g
Therefore, 160 g of SO3 are needed to make 400 g of 49% H2SO4.
Learn more about mass and moles at: brainly.com/question/15374113
#SPJ1
Strong electrolytes by definition are those compounds that completely dissociates into their component ions when dissolved in water. The chemical formula for the zinc fluoride is,
ZnF2
This means that each formula unit is composed of one atom of zinc and 2 atoms of fluoride. The ions comprising the unit are Zn²⁺ and F⁻. The dissociation is as shown below,
ZnF₂ --> Zn²⁺ + 2F⁻
When dissolved in water it is expected that the compound dissociates into three different ions, one Zn²⁺ and two F⁻.
Avagadro's number is just a measurement. One mole is 6.022 X 10^23 of anything - atoms, molecules, marbles... anything.
<span>1) If one mole = 6.022 X 10^23, then 8.00mol of H2S is: </span>
<span>(3.00mol H2S) (6.022 X 10^23 molecules H2S / 1 mol H2S) = 1.8060 X 10^24 molecules H2S. </span>
<span>Rounded to 3 sig figs =1.81 X 10^24 molecules H2S
</span>part2.
<span> This one uses moles in the stoichiometric sense as well as the measurement. One formula unit of MgCl2 contains 1 mole Mg and 2 moles Cl. </span>
<span>First, figure out how many moles of formula units there are. </span>
(1.81 X 10^24 FU's) (1mol MgCl2 / 6.022 X 10^23 FU's) = 3.0056mol MgCl2.
<span>Now, we know that there are 2 moles of Cl in every mole of MgCl2 (2 Cl atoms in every unit of MgCl2). From this we can determine how many moles of Cl atoms there are: </span>
<span>(3.0056mol MgCl2) (2mol Cl atoms / 1mol MgCl2) = 6.0112mol Cl atoms. </span>
<span>Now round to 3 sig figs = 10.0mol Cl atoms</span>