Answer:
The correct option is b) USD to GBP; GBP to CHF; CHF to USD.
Explanation:
A triangular arbitrage can be described as the act of taking advantage of a foreign exchange market arbitrage opportunity created by a pricing difference between three different currencies.
A triangle arbitrage method entails three deals, with the first currency being converted to a second, the second currency being converted to a third, and the third currency being converted to the first.
In the question, USD is the first currency, GBP is the second currency, and CHF is the third currency. Based on the explanation above, the three steps which will create triangular arbitrage profit are as follows: first step, convert <u>USD to GBP</u>; second step, convert <u>GBP to CHF</u>, and third step, convert <u>CHF to USD</u>.
Therefore, the correct option is b) USD to GBP; GBP to CHF; CHF to USD.
Answer:
a. A 1% increase is a positive output gap decreases the unemployment rate by 0.5%
Explanation:
Okuns law looked at the relationship between unemployment and output empirically.
It states that that for every 1% increase in the unemployment rate, positive output gap falls by roughly 2%.
I hope my answer helps you.
Answer:
Following are the solution to this question:
Explanation:
Assume that
will be a 12-month for the spot rate:
![\to 1.25 \% \times \frac{100}{2} \times 0.99 + \frac{(1.25\% \times \frac{100}{2}+100)}{(1+\frac{r_1}{2})^2}=98\\\\\to \frac{1.25}{100} \times \frac{100}{2} \times 0.99 + \frac{(\frac{1.25}{100} \times \frac{100}{2}+100)}{(1+\frac{r_1}{2})^2}=98\\\\\to \frac{1.25}{2} \times 0.99 + \frac{(\frac{1.25}{2} +100)}{(1+\frac{r_1}{2})^2}=98\\\\\to 0.61875 + \frac{( 0.625 +100)}{(\frac{2+r_1}{2})^2}=98\\\\\to 0.61875 + \frac{( 100.625)}{(\frac{2+r_1}{2})^2}=98\\\\\to 0.61875 + \frac{402.5}{(2+r_1)^2}=98\\\\](https://tex.z-dn.net/?f=%5Cto%201.25%20%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%20%2B%20%5Cfrac%7B%281.25%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%20%5Cfrac%7B1.25%7D%7B100%7D%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%20%2B%20%5Cfrac%7B%28%5Cfrac%7B1.25%7D%7B100%7D%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%20%5Cfrac%7B1.25%7D%7B2%7D%20%5Ctimes%200.99%20%2B%20%5Cfrac%7B%28%5Cfrac%7B1.25%7D%7B2%7D%20%2B100%29%7D%7B%281%2B%5Cfrac%7Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20%2B%20%5Cfrac%7B%28%200.625%20%2B100%29%7D%7B%28%5Cfrac%7B2%2Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20%2B%20%5Cfrac%7B%28%20100.625%29%7D%7B%28%5Cfrac%7B2%2Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20%2B%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%3D98%5C%5C%5C%5C)
![\to 0.61875 + \frac{402.5}{(2+r_1)^2}=98\\\\\to 0.61875 -98 = \frac{402.5}{(2+r_1)^2}\\\\\to -97.38125= \frac{402.5}{(2+r_1)^2}\\\\\to (2+r_1)^2= \frac{402.5}{ -97.38125}\\\\\to (2+r_1)^2= -4.13\\\\ \to r_1=3.304\%](https://tex.z-dn.net/?f=%5Cto%200.61875%20%2B%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20-98%20%3D%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%5C%5C%5C%5C%5Cto%20-97.38125%3D%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%5C%5C%5C%5C%5Cto%20%282%2Br_1%29%5E2%3D%20%5Cfrac%7B402.5%7D%7B%20-97.38125%7D%5C%5C%5C%5C%5Cto%20%282%2Br_1%29%5E2%3D%20-4.13%5C%5C%5C%5C%20%5Cto%20r_1%3D3.304%5C%25)
Assume that
will be a 18-month for the spot rate:
![\to 1.5\% \times \frac{100}{2} \times 0.99+1.5\% \times \frac{100}{2} \times \frac{1}{(1+ \frac{3.300\%}{2})^2}+\frac{(1.5\% \times \frac{100}{2}+100)}{(1+\frac{r_2}{2})^3}=97\\\\\to \frac{1.5}{100} \times \frac{100}{2} \times 0.99+\frac{1.5}{100} \times \frac{100}{2} \times \frac{1}{(1+ \frac{\frac{3.300}{100}}{2})^2}+\frac{(\frac{1.5}{100} \times \frac{100}{2}+100)}{(1+\frac{r_2}{2})^3}=97\\\\](https://tex.z-dn.net/?f=%5Cto%201.5%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%2B1.5%5C%25%20%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B3.300%5C%25%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%281.5%5C%25%20%20%5Ctimes%20%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%20%5Cfrac%7B1.5%7D%7B100%7D%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%2B%5Cfrac%7B1.5%7D%7B100%7D%20%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B%5Cfrac%7B3.300%7D%7B100%7D%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%28%5Cfrac%7B1.5%7D%7B100%7D%20%20%5Ctimes%20%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C)
![\to \frac{1.5}{2} \times 0.99+\frac{1.5}{2}\times \frac{1}{(1+ \frac{\frac{3.300}{100}}{2})^2}+\frac{(\frac{1.5}{2} +100)}{(1+\frac{r_2}{2})^3}=97\\\\\to 0.7425+0.75 \times \frac{1}{(1+ \frac{\frac{3.300}{100}}{2})^2}+\frac{(0.75 +100)}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4925 \times \frac{1}{(1+0.0165)^2}+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4925 \times \frac{1}{(1.033)}+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\](https://tex.z-dn.net/?f=%5Cto%20%5Cfrac%7B1.5%7D%7B2%7D%20%20%5Ctimes%200.99%2B%5Cfrac%7B1.5%7D%7B2%7D%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B%5Cfrac%7B3.300%7D%7B100%7D%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%28%5Cfrac%7B1.5%7D%7B2%7D%20%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%200.7425%2B0.75%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B%5Cfrac%7B3.300%7D%7B100%7D%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%280.75%20%20%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4925%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B0.0165%29%5E2%7D%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4925%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281.033%29%7D%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C)
![\to 1.4925 \times 0.96+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4328+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4328-97= \frac{(100.75 )}{(1+\frac{r_2}{2})^3}\\\\\to -95.5672= \frac{(100.75 )}{(1+\frac{r_2}{2})^3}\\\\\to (1+\frac{r_2}{2})^3= -1.054\\\\\to r_2=3.577\%](https://tex.z-dn.net/?f=%5Cto%201.4925%20%5Ctimes%200.96%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4328%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4328-97%3D%20%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%5C%5C%5C%5C%5Cto%20-95.5672%3D%20%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%5C%5C%5C%5C%5Cto%20%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%3D%20-1.054%5C%5C%5C%5C%5Cto%20r_2%3D3.577%5C%25)
Assume that
will be a 18-month for the spot rate:
![\to 1.25\% \times \frac{100}{2} \times 0.99+1.25\% \times \frac{100}{2} \times \frac{1}{(1+\frac{3.300\%}{2})^2}+1.25\%\times\frac{100}{2} \times \frac{1}{(1+\frac{3.577\%}{2})^3}+(1.25\% \times \frac{\frac{100}{2}+100}{(1+\frac{r_3}{2})^4})=96\\\\](https://tex.z-dn.net/?f=%5Cto%201.25%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%2B1.25%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%5Cfrac%7B3.300%5C%25%7D%7B2%7D%29%5E2%7D%2B1.25%5C%25%5Ctimes%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%5Cfrac%7B3.577%5C%25%7D%7B2%7D%29%5E3%7D%2B%281.25%5C%25%20%5Ctimes%20%5Cfrac%7B%5Cfrac%7B100%7D%7B2%7D%2B100%7D%7B%281%2B%5Cfrac%7Br_3%7D%7B2%7D%29%5E4%7D%29%3D96%5C%5C%5C%5C)
to solve this we get ![r_3=3.335\%](https://tex.z-dn.net/?f=r_3%3D3.335%5C%25)
It is an architect because they love to build things and create things as well <span />
Answer:
(B) Operating income has increased as a percentage of revenue
Explanation:
Conducting a vertical analysis,
Operating income (year 1) = Fees earned, less operating expenses
= 149,700 - 127,245 = $22,455
Therefore operating income as a percentage of revenue = 22,455/149,700 = 15%.
Operating income (year 2) = 153,500 - 122,800 = $30,700
Therefore operating income as a percentage of revenue = 30,700/153,500 = 20%.
Therefore, operating income as a percentage of revenue increased from year 1 to year 2.