0.031 g is equal to 31 grams
Answer:

Explanation:
In this problem we have three important moments; the instant in which the ball is released (1), the instant in which the ball starts to fly freely (2) and the instant in which has its maximum height (3). From the conservation of mechanical energy, the total energy in each moment has to be the same. In (1), it is only elastic potential energy; in (2) and (3) are both gravitational potential energy and kinetic energy. Writing this and substituting by known values, we obtain:

Since we only care about the velocity
, we can keep only the second and third parts of the equation and solve:

So, the speed of the ball just after the launch is 17.3m/s.
Answer:
2*10^9electrons
Explanation:
Remember that the net force will be zero at terminal voltege so
Mg = 6πrng
At 35v
We have
qvr = 6πrng
q= 6 x 3.142* nx 2.6*10^-5/35
q,= 3.2x 10^ - 10C
So using n= q/e
= 3.2x 10^ - 10C/1.6*10-19
= 2*10^9electrons
Answer: W = 294 J
Explanation: Solution:
Work is expressed as the product of force and the distance of the object.
W = Fd where F = mg
W= Fd
= mg d
= 15 kg ( 9.8 m/s²) ( 2m )
= 294 J
The solubility of the salt. : 24 g/100 g solvent(water)
<h3>Further explanation</h3>
Given
48 gram of a salt in 200 gram of water at 35°C
Required
The solubility of the salt.
Solution
Solubility : the amount of a substance that can be dissolved in a solvent
Can be formulated(for 100 g solution)⇒grams solute per 100 g of solvent(100 ml water)

Input the value :
