Answer:
= 85.7 ° C
Explanation:
For this exercise we will use the calorimetry heat ratios, let's start with the heat lost by the evaporation of coffee, since it changes from liquid to vapor state
Q₁ = m L
Where m is the evaporated mass (m = 2.00 103-3kg) and L is 2.26 106 J / kg, where we use the latent heat of the water
Q₁ = 2.00 10⁻³ 2.26 10⁶
Q1 = 4.52 10³ J
Now the heat of coffee in the cup, which does not change state is
Q coffee = M
(
-
)
Since the only form of energy transfer is terminated, the heat transferred is equal to the evaporated heat
Qc = - Q₁
M ce (
-
) = - Q₁
The coffee dough left in the cup after evaporation is
M = 250 -2 = 248 g = 0.248 kg
-Ti = -Q1 / M
= Ti - Q1 / M 
Since coffee is essentially water, let's use the specific heat of water,
= 4186 J / kg ºC
Let's calculate
= 90.0 - 4.52 103 / (0.248 4.186 103)
= 90- 4.35
= 85.65 ° C
= 85.7 ° C
Claim 2: Molecules speed up when they get energy from other molecules and slow down when they give energy to other molecules.
Energy can’t be destroyed (stated in claim 1) so claim 2 is more than likely to be correct
Answer:
It may not be at the sea level
Explanation:
The reason here is water only boils at sea level. This means that if you move water to a different height, say top of a mountain, the boiling temperature of water would change. This is due to the pressure drop at high place. The drop of pressure would make it harder to transform water liquid to gas, thus requiring more temperature.
Power is the energy transferred or "WORK DONE" in one second
Answer:
D
Explanation:
Because it is impossible for it to show the real depth of the ocean and how deep it is