8. 70.5* 10. 30* 12. 5.1*
is in quadrant I, so
.
is in quadrant II, so
.
Recall that for any angle
,

Then with the conditions determined above, we get

and

Now recall the compound angle formulas:




as well as the definition of tangent:

Then
1. 
2. 
3. 
4. 
5. 
6. 
7. A bit more work required here. Recall the half-angle identities:



Because
is in quadrant II, we know that
is in quadrant I. Specifically, we know
, so
. In this quadrant, we have
, so

8. 
<span>Any point in figure A can be mapped to a point in figure B.</span>
Answer:
<h2>
A. Zero, because the discriminant is negative. </h2>
Step-by-step explanation:
I just did it.