Answer:
Y= 2x+2
Step-by-step explanation:
line equation is y=mx +c
m is the gradient = 2
We are given an x and y value
X= 1
y= 4
substitute that into the equation:
4= 2(1) +c
2=c
Put all the equation together:
Y= 2x+2
Answer:
<h2>
<em>y</em><em>=</em><em>-</em><em>4</em></h2>
<em>Sol</em><em>ution</em><em>,</em>
<em>X=</em><em>4</em>
<em>Now</em><em>,</em>
<em>
</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em>
The opposite would be 3
__
4
Just switch out the negatives for positives
I think the answer is plus bc you need to add
Using polynomial long division, we get
3x^3+6x^2+11x
_____________
(x+2) | 3x^4-x^2+cx-2
-(3x^4+6x^3)
____________
6x^3-x^2+cx-2
- (6x^3+12x^2)
_____________
11x^2+cx-2
-(11x^2+22x)
__________
(22+c)x-2.
If you're wondering how I did the long division, what I essentially did was get the first value (at the start, it was 3x^4) and divided it by the first value of the divisor (which in x+2 was x) to get 3x^3 in our example. I then subtracted the polynomial by the whole divisor multiplied by, for example, 3x^3 and repeated the process.
For this to be a perfect factor, (x+2)*something must be equal to (22+c)x-2. Focusing on how to cancel out the 2, we have to add 2 to it. To add 2 to it, we have to multiply (x+2) by 1. However, there's a catch, which is that we subtract whatever we multiply (x+2) by, so we have to multiply it by -1 instead. We still need to cross out (22+c)x. Multiplying (x+2) by -1, we get
(-x-2) but by subtracting the whole thing from something means that we have to add -(-x-2)=x+2 to something to get 0. x+2-x-2=0, xo (22+c)x-2 must equal -x-2, meaning that (22+c)=-1 and c=-23