Answer:
The two main reasons are nonpolar core of the bilayer and the active transport.
Explanation:
The membrane is structured to have two outer layers that are polar and an inner layer that is nonpolar.
If a membrane protein is exposed to the solvent, i<em>t will also have a polar side. It would be very difficult for the polar face of the membrane to move through the nonpolar core of the bilayer.</em> Therefore, this model is not feasible.
One major form of transport, active transport, moves solutes up the concentration gradient. <em>The binding of a solute and then release on another side of the membrane would only work for facilitated diffusion because it would cause a net movement of solutes down the concentration gradient.</em> It is unclear how energy could be expended to drive this process in the transverse carrier model.<em> Therefore, the transverse carrier model does not explain active transport.</em>
Chemical reactions are how new forms of matter are made. While nuclear reactions also may produce new matter, nearly all the substances you encounter in daily life are the result of chemical changes. Chemical reactions help us understand the properties of matter
<span>There are two structures that would be found at a passive continental margin. These structures are continental shelves and continental slopes.</span>
Enzymes bind with chemical reactants called substrates
Answer:
The sun provides more than enough energy to meet the whole world's energy needs, and unlike fossil fuels, it won't run out anytime soon. As a renewable energy source, the only limitation of solar power is our ability to turn it into electricity in an efficient and cost-effective way.