Answer:
solution is attached in the picture below
Step-by-step explanation:
Answer:
d = 0.0175n ---> required equation
Billy can buy 285.714 gram nut with $5
Step-by-step explanation:
cost of 100g loose nut = $1.75
dividing LHS and RHS by 100
cost of 100/100g loose nut = $1.75
Thus, cost of 1 gm loose nut = $0.0175
let the weight of loose nut be n gm
Multiplying LHS and RHS by n
cost of x g loose nut = $0.0175*n = $0.0175n
It is given that Billy spent d dollars to buy n gm nuts
thus,
d = 0.0175n ---> required equation
________________________________________________
He spent $5 to buy nuts
substituting value of d as 5 we have
0.0175n = 5
=>n = 5/0.0175 = 285.714
Thus, Billy can buy 285.714 gram nut with $5.
Answer:
28.26 miles
Step-by-step explanation:
Area= pi times radius squared
diameter is twice the radius so 6÷2=3miles
3 miles is the radius
So A= 3.14 × 3²
= 28.26
Answer:
(A) ![A=\left[\begin{array}{ccc}10&20&40\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D)
(B) ![B=\left[\begin{array}{ccc}11&22&44\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D)
(C) ![A+B=\left[\begin{array}{ccc}21&42&84\end{array}\right]](https://tex.z-dn.net/?f=A%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%2642%2684%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The manager ordered 10 lb of tomatoes, 20 lb of zucchini, and 40 lb of onions from a local farmer one week.
(A)
Matrix <em>A</em> represents the amount of each item ordered. It is 1 × 3 matrix.
Then matrix <em>A</em> is:
![A=\left[\begin{array}{ccc}10&20&40\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D)
(B)
Next week the manager increases the order of all the products by 10%.
Then the amount of new orders are:
Tomatoes ![=10\times [1+\frac{10}{100}]=10\times1.10=11](https://tex.z-dn.net/?f=%3D10%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D10%5Ctimes1.10%3D11)
Zucchini ![=20\times [1+\frac{10}{100}]=20\times1.10=22](https://tex.z-dn.net/?f=%3D20%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D20%5Ctimes1.10%3D22)
Onions ![=40\times [1+\frac{10}{100}]=40\times1.10=44](https://tex.z-dn.net/?f=%3D40%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D40%5Ctimes1.10%3D44)
Th matrix <em>B</em> represents the amount of each order for the next week. Then matrix <em>B</em> is:
![B=\left[\begin{array}{ccc}11&22&44\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D)
(C)
Add the two matrix <em>A</em> and <em>B</em> as follows:
![A+B=\left[\begin{array}{ccc}10&20&40\end{array}\right]+\left[\begin{array}{ccc}11&22&44\end{array}\right]\\=\left[\begin{array}{ccc}(10+11)&(20+22)&(40+44)\end{array}\right]\\=\left[\begin{array}{ccc}21&42&84\end{array}\right]](https://tex.z-dn.net/?f=A%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%2810%2B11%29%26%2820%2B22%29%26%2840%2B44%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%2642%2684%5Cend%7Barray%7D%5Cright%5D)
The entries of the matrix (<em>A</em> + <em>B</em>) represent the amount of tomatoes, zucchini and onions ordered for two weeks.
Firstly 31*4=124
1*3=3
124-3=121
121/12