I am going to make what is hopefully not an incorrect assumption and say that since the segmentXSZ is black and the other lines are blue, that XS is congruent to ZS. If that be the case we have a side in each triangle that is congruent to each other and an angle that is marked as congruent. Angles XSW and ZSY are vertical angles. By definition, vertical angles are congruent. In each triangle, then, we have an angle, a side and an angle which gives us the congruency postulate ASA.
Okkkkkkkkkkkkkkkkkkkkkkkkkkk
One nice thing about this situation is that you’ve been given everything in the same base. To review a little on the laws of exponents, when you have two exponents with the same base being:
– Multiplied: Add their exponents
– Divided: Subtract their exponents
We can see that in both the numerator and denominator we have exponents *multiplied* together, and the product in the numerator is being *divided* by the product in the detonator, so that translates to *summing the exponents on the top and bottom and then finding their difference*. Let’s throw away the twos for a moment and just focus on the exponents. We have
[11/2 + (-7) + (-5)] - [3 + 1/2 + (-10)]
For convenience’s sake, I’m going to turn 11/2 into the mixed number 5 1/2. Summing the terms in the first brackets gives us
5 1/2 + (-7) + (-5) = - 1 1/2 + (-5) = -6 1/2
And summing the terms in the second:
3 + 1/2 + (-10) = 3 1/2 + (-10) = -6 1/2
Putting those both into our first question gives us -6 1/2 - (-6 1/2), which is 0, since any number minus itself gives us 0.
Now we can bring the 2 back into the mix. The 0 we found is the exponent the 2 is being raised to, so our answer is
2^0, which is just 1.