Answer:
Step-by-step explanation:
Given that the time to complete a standardized exam is approximately normal with a mean of 70 minutes and a standard deviation of 10 minutes.
P(completing exam before 1 hour)
= P(less than an hour) = P(X<60)
=P(Z<
)
=0.5-0.34=0.16
i.e. 16% of students completed the standardized exam.
The unit rate is 60 miles per hour and the driver will reach before time with the calculated constant speed
Step-by-step explanation:
Given
Distance = d = 45 miles
Time = t = 3/4 hour
The unit rate is defined as the distance per unit time. In this case, the unit rate can also be called speed.
So,

Using this unit rate we can see if the car can travel 65 miles in 1.25 hours or not
Given
Distance = d1 = 65 miles
Speed = s = 60 miles per hour
Putting the values in the formula for speed

As we can see that 1.08 is less than 1.25 so the driver will reach the meeting before time if he drives on a constant speed of 60 miles per hour
Hence,
The unit rate is 60 miles per hour and the driver will reach before time with the calculated constant speed
Keywords: Speed, unit rate
Learn more about speed at:
#LearnwithBrainly
Answer:
31.82% probability that this day would be a winter day
Step-by-step explanation:
We use the conditional probability formula to solve this question. It is

In which
P(B|A) is the probability of event B happening, given that A happened.
is the probability of both A and B happening.
P(A) is the probability of A happening
In this question:
Event A: Rain
Event B: Winter day
Probability of rain:
0.42 of 0.25(winter), 0.23 of 0.25(spring), 0.16 of 0.25(summer) or 0.51 of 0.25(fall).
So

Intersection:
Rain on a winter day, which is 0.42 of 0.25. So

If you were told that on a particular day it was raining in Vancouver, what would be the probability that this day would be a winter day?

31.82% probability that this day would be a winter day