When you subtract them you get the answer 57.99
8/9 divided by 10/3= 4/15
Answer:
P(A∣D) = 0.667
Step-by-step explanation:
We are given;
P(A) = 3P(B)
P(D|A) = 0.03
P(D|B) = 0.045
Now, we want to find P(A∣D) which is the posterior probability that a computer comes from factory A when given that it is defective.
Using Bayes' Rule and Law of Total Probability, we will get;
P(A∣D) = [P(A) * P(D|A)]/[(P(A) * P(D|A)) + (P(B) * P(D|B))]
Plugging in the relevant values, we have;
P(A∣D) = [3P(B) * 0.03]/[(3P(B) * 0.03) + (P(B) * 0.045)]
P(A∣D) = [P(B)/P(B)] [0.09]/[0.09 + 0.045]
P(B) will cancel out to give;
P(A∣D) = 0.09/0.135
P(A∣D) = 0.667
Answer: 10/24
Hope that help :)
Rate = (150 miles)/(3 hrs) = 50 mph
so . . .
(50 mph)*(time) = 400 miles
*divide both sides by 50 mph
time = (400 miles)/(50 mph) = 8 hrs
time = 8 hrs