1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
butalik [34]
3 years ago
11

Estimate 1 7/8 - 1 1/2

Mathematics
1 answer:
OLEGan [10]3 years ago
3 0

Answer:

1⅞ - 1½ ≈ ½

Step-by-step explanation:

Estimation is mental arithmetic. Practice until you can do this in your head.

Here's one way to estimate with mxed numbers.

Step 1. Separate into whole number and fractional parts

1⅞ - 1½ = 1 + ⅞ - 1 - ½

Step 2. Solve the whole number parts

1 - 1 = 0

Step 3. Solve the fraction parts by estimating.

We will round to the nearest ½, so we should round up a number greater than ¾.

(a) ⅞ is greater than ⁶/₈ (¾), so we round it up to ⁸/₈:

⅞ - ½ ≈ ⁸/₈ - ½

(b) Convert each fraction to a common denominator.

We can write ⁸/₈ as ²/₂

⁸/₈ - ½ = ²/₂ - ½

(c) Solve the fraction part

²/₂ - ½ = ½

Step 4. Combine the whole and fraction parts

0 + ½ = ½  

So, 1⅞ - 1½ ≈ ½

You might be interested in
Help me pls ASAPPPPPPPP
polet [3.4K]

Answer:

zdhjdhdhdhdjsjda i dont know sorry

bdhshhfbxbsnsnxnznsnznsnsnns

Step-by-step explanation:

sorry

5 0
3 years ago
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
Can someone please help it’s for dance class not mathematics
Zinaida [17]
2. marking choreography is essential to your memory of the dance without having to go all out of each time to practice.
6 0
3 years ago
\frac{3}{4} \times 2 =
suter [353]

To multiply two fractions, you simply multiply numerators and denominators together.

2 can be read as the fraction 2/1

So, the multiplication is

\dfrac{3}{4} \times \dfrac{2}{1} = \dfrac{3\times 2}{4 \times 1} = \dfrac{6}{4} = \dfrac{3}{2}

8 0
3 years ago
5x - Зу = 2<br> Find the slope of this equation
torisob [31]
The slope is 5/3 and the y- intercept is -2/3
8 0
3 years ago
Read 2 more answers
Other questions:
  • What does s(200) = 3 mean in terms of the problem?
    10·1 answer
  • The corporate team-building event will cost $14 if it has 7 attendees. If there are 9
    7·1 answer
  • If a penny is 0.061 inch thick what is the value of the 6 in the thickness of a penny
    8·1 answer
  • The weights of adobe bricks used for construction are normally distributed with a mean of 3 pounds and a standard deviation of 0
    13·1 answer
  • A sphere has a radius of 6 inches. What is the volume of the sphere in terms of π? V = 12 π in.3
    10·1 answer
  • Slope of 1/10 passes through the points (0,1) and (c,2) what is the value of c<br> ten pts?
    6·1 answer
  • Find the slope of each line.
    10·1 answer
  • PLS HELP ME I WILL DO ANYTHING PLS
    5·2 answers
  • Nine subtracted from the product of 4 and a number is greater than -19
    10·1 answer
  • Whoever gets it right can have brainliest, but answer ASAP!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!