It was thought to have been started by an asteroid that hit earth and wiped out the dinosaurs.
Answer:
C = (5/9) F - (160/9)
They both read equal at Z = - 40
Explanation:
We are looking for a linear function so we can write the following condition
Y = aX + b
Applying it to the exercise we got C = a F + b
Let's use the facts that C = 0 when F = 32 and C = 100 when F = 212
0 = 32 a + b (1)
100 = 212 a + b (2)
From (1) b = - 32 a , when we replace this in (2) we obtain a = (5/9)
and b = - (5/9)32 = - 160/9
Finally the linear function is C = (5/9) F - (160/9)
Both readings are equal at a Z number so
Z = (5/9) Z - 160/9
(4/9) Z = -160/9 and Z = - 40
The sun? if not, then i have no idea. ahahaha
Answer: The molarity of
anions in the chemist's solution is 0.0084 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in ml
moles of
= 
Now put all the given values in the formula of molality, we get

As 1 mole of
gives = 3 moles of 
0.0028 moles of
gives =
of 
Thus the molarity of
anions in the chemist's solution is 0.0084 M
<u>Answer:</u> The value of
is 0.136 and is reactant favored.
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For the chemical reaction between carbon monoxide and hydrogen follows the equation:

The expression for the
is given as:
![K_{c}=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
We are given:
![[NH_3]=0.25M](https://tex.z-dn.net/?f=%5BNH_3%5D%3D0.25M)
![[H_2]=0.75M](https://tex.z-dn.net/?f=%5BH_2%5D%3D0.75M)
![[N_2]=1.1M](https://tex.z-dn.net/?f=%5BN_2%5D%3D1.1M)
Putting values in above equation, we get:


There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium.
For the given reaction, the value of
is less than 1. Thus, the reaction is reactant favored.
Hence, the value of
is 0.136 and is reactant favored.