potassium reacts the most vigorously.
Answer:
The rate of decay of atoms in container A is greater than the rate of decay of atoms in container B.
Explanation:
From the question,
Container A contains 1000 atoms
Container B contains 500 atoms
<u>The rate of decay of atoms in container A is greater than the rate of decay of atoms in container B.</u>
The reason for such is due to the difference in the concentration of the isotopes. Container A which contains higher number of atoms will have the more changes of the release of the neutron as the changes of the hitting and splitting increases as the density of the atoms increases.
<u>Thus, the atoms in the container A will therefore decay faster than the atoms in the container B. </u>
Answer:
(CH₃)₃COCH3₃ and (CH₃)₂CHOCH₂CH₃
Explanation:
Isomers are compounds which have the same molecular formula. Constitutional isomers have different connectivity; the atoms are connected in different ways.
1. (CH₃)₃COCH₃
2. (CH₃)₂CHOCH3₃
3. (CH₃)₂CHOCH₂CH₃
Molecules 1 and 3 have the same formula (C₅H₁₂O) and are isomers. Molecule 2 is not an isomer. From the structural formula, it is clear that Molecules 1 and 3 have different connectivity.
The answer is 1/16.
Half-life is the time required for the amount of a sample to half its value.
To calculate this, we will use the following formulas:
1.

,
where:
<span>n - a number of half-lives
</span>x - a remained fraction of a sample
2.

where:
<span>

- half-life
</span>t - <span>total time elapsed
</span><span>n - a number of half-lives
</span>
So, we know:
t = 10 min
<span>

= 2.5 min
We need:
n = ?
x = ?
</span>
We could first use the second equation to calculate n:
<span>If:

,
</span>Then:

⇒

⇒

<span>
</span>
Now we can use the first equation to calculate the remained fraction of the sample.
<span>

</span>⇒

<span>⇒

</span>
A physical change is a change in the appearance of a substance.