1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
13

The total amount of energy and mass in the universe is _____. always changing slowly increasing constant slowly decreasing

Physics
2 answers:
abruzzese [7]3 years ago
8 0
The answer is it stays constant
dmitriy555 [2]3 years ago
8 0

Answer:

constant

Explanation:

The universe is an isolated system. In thermodynamics, an isolated system is a system that does not exchange neither matter (mass) nor energy with the external surroundings.

As a consequence, the energy and mass of an isolated system is always constant (because it cannot be exchanged with the outside): this is known as law of conservation of energy, and it can be applied to the universe as well, since it is an isolated system.

So, the correct answer is

The total amount of energy and mass in the universe is constant

You might be interested in
Which of the following keys moves the insertion point to the beginning of data in a cell? (Points : 2)
Korvikt [17]
Insert moves the insertion point to the beginning of data in a cell so the answer is INSERT :)))
i hope this be helpful
6 0
3 years ago
Hydraulic press is a force multiplier . show mathematically
Vadim26 [7]
Yes it’s is a force multiplier
5 0
4 years ago
Six artificial satellites complete one circular orbit around a space station in the same amount of time. Each satellite has mass
oee [108]

Answer:

The ranking of the net force acting on different satellite from largest to smallest is {F_E} > {F_F} > {F_A} = {F_B} = {F_D} > {F_C}

Explanation:

In order to get a good understanding of this solution we need to understand that the main concepts used to solve this problem are centripetal force and velocity of satellite.

Initially, use the expression of the velocity of satellite and find out its dependence on the radius of orbit. Use the dependency in the centripetal force expression.

Finally, we find out the velocity of the six satellites and use that expression to find out the force experienced by the satellite. Find out the force in terms of mass (m) and radius of orbit (L) and at last compare the values of force experienced by six satellites.

Fundamentals

The centripetal force is necessary for the satellite to remain in an orbit. The centripetal force is the force that is directed towards the center of the curvature of the curved path. When a body moves in a circular path then the centripetal force acts on the body.

The expression of the centripetal force experienced by the satellite is given as follows:

                    {F_{\rm{c}}} = \frac{{m{v^2}}}{L}

Here, m is the mass of satellite, v is the velocity, and L is the radius of orbit.

The velocity of the satellite with which the satellite is orbiting in circular path is given as follows:

                        v = \frac{{2\pi L}}{T}

Here, T is the time taken by the satellite.

The velocity of the satellite with which the satellite is orbiting in circular path is given as follows;

                    v = \frac{{2\pi L}}{T}

Since, all the satellites complete the circular orbit in the same amount of time. The factor of   \frac{{2\pi }}{T}   is not affected the velocity value for the six satellites. Therefore, we can write the expression of v given as follows:

Substitute  v = \frac{{2\pi L}}{T} in the force expression {F_{\rm{c}}} = \frac{{m{v^2}}}{L}   as follows:

                              \begin{array}{c}\\{F_c} = \frac{{m{{\left( {\frac{{2\pi L}}{T}} \right)}^2}}}{L}\\\\ = \frac{{4{\pi ^2}}}{{{T^2}}}mL\\\end{array}

Since, all the satellites complete the circular orbit in the same amount of time. The factor of \frac{{4{\pi ^2}}}{{{T^2}}}  not affect the force value for six satellites.Therefore, we can write the expression of {F_c}  given as follows:

        {F_c} = kmL

Here, k refers to constant value and equal to  \frac{{4{\pi ^2}}}{{{T^2}}}

    {F_A} = k{m_A}{L_A}

Substitute 200 kg for {m_A}   and 5000 m for LA in the expression                                  {F_A} = k{m_A}{L_A}

\begin{array}{c}\\{F_A} = k\left( {200{\rm{ kg}}} \right)\left( {5000{\rm{ m}}} \right)\\\\ = {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite B from their rocket is given as follows:{F_B} = k{m_B}{L_B}

Substitute 400 kg for {m_B} and 2500 m for in the expression {F_B} = k{m_B}{L_B}

\begin{array}{c}\\{F_B} = k\left( {400{\rm{ kg}}} \right)\left( {2500{\rm{ m}}} \right)\\\\ = {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite C from their rocket is given as follows:{F_C} = k{m_C}{L_C}

Substitute 100 kg for {m_C}and 2500 m for in the above expression  {F_C} = k{m_C}{L_C}

\begin{array}{c}\\{F_C} = k\left( {100{\rm{ kg}}} \right)\left( {2500{\rm{ m}}} \right)\\\\ = 0.25 \times {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite D from their rocket is given as follows:{F_D} = k{m_D}{L_D}

Substitute 100 kg for {m_D} and 10000 m for {L_D} in the expression{F_D} = k{m_D}{L_D}

\begin{array}{c}\\{F_D} = k\left( {100{\rm{ kg}}} \right)\left( {10000{\rm{ m}}} \right)\\\\ = {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite E from their rocket is given as follows:{F_E} = k{m_E}{L_E}

Substitute 800 kg for {m_E}  and 5000 m for  {L_E} in the expression {F_E} = k{m_E}{L_E}

\begin{array}{c}\\{F_E} = k\left( {800{\rm{ kg}}} \right)\left( {5000{\rm{ m}}} \right)\\\\ = 4.0 \times {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite F from their rocket is given as follows:{F_F} = k{m_F}{L_F}

Substitute 300 kg for {m_F} and 7500 m for {L_F} in the expression {F_F} = k{m_F}{L_F}

\begin{array}{c}\\{F_F} = k\left( {300{\rm{ kg}}} \right)\left( {7500{\rm{ m}}} \right)\\\\ = 2.25 \times {10^6}k{\rm{ N}}\\\end{array}

The value of forces obtained for the six-different satellite are as follows.

\begin{array}{l}\\{F_A} = {10^6}k{\rm{ N}}\\\\{F_B} = {10^6}k{\rm{ N}}\\\\{F_C} = 0.25 \times {10^6}k{\rm{ N}}\\\\{F_D} = {10^6}k{\rm{ N}}\\\\{F_E} = 4.0 \times {10^6}k{\rm{ N}}\\\\{F_F} = 2.25 \times {10^6}k{\rm{ N}}\\\end{array}

     The ranking of the net force acting on different satellite from largest to smallest is {F_E} > {F_F} > {F_A} = {F_B} = {F_D} > {F_C}

7 0
4 years ago
What kind of small objects composes much of the universe?
Inga [223]
It’s atoms thank me later (give me brailiest)
7 0
3 years ago
Use the image below to answer the following question (ruler not to scale).
Svetradugi [14.3K]

Answer:

it depends on wether the + and - are facing eachother

or away from eachother

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Some wooden rulers do not start with 0 at the edge, but have it set in a few millimeters. How could this improve the accuracy of
    5·1 answer
  • What is indirect sunlight? how does the tilt of the earth affect which type of sunlight the earth receives?
    8·1 answer
  • A 86.6-kg man is standing on a frictionless ice surface when he throws a 2.40-kg book horizontally at a speed of 10.9 m/s. With
    15·1 answer
  • An electroscope is a fork-shaped device commonly used to detect the presence of charge. The tin leaves of an electroscope will s
    6·1 answer
  • In physics the use of force to move an object is called work. True or false?
    13·1 answer
  • Can rock undergo compression, tension, and shear stress all at once?<br> explain
    13·1 answer
  • The slope of a position-time graph can be used to find the moving obiects
    13·1 answer
  • What comes into your mind when you hear the words momentum
    8·1 answer
  • A hypothesis always starts with.....
    7·1 answer
  • Q5- Knowing now that your mood might affect your memory, what strategies could you employ to assist your memories and make sure
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!