To solve this problem, we are going to use the formula for
work which is Fd where x and y are measured separately.
X direction: W = 13.5 x 230 = 3105 Joules
Y direction: W = -14.3 x -165 = 2360 Joules
So the total work is getting the sum of the two: 3105 + 2360
= 5465 Joules
Answer: 2934.75 Joules
Explanation:
Potential energy can be defined as energy possessed by an object or body due to its position.
Mathematically, potential energy is given by the formula;
<em>P.E = mgh</em>
Where P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per second square.
h represents the height measured in meters.
Given the following data;
Weight =645
Height = 4.55
<em>P.E = mgh</em>
But we know that weight = mg = 645N
Substituting into the equation, we have;
<em>P.E = 645 • 4.55</em>
<em>P.E = 2934.75J</em>
Potential energy, P.E = 2934.75 Joules.
Since like poles repel, the two horseshoe magnets have like poles facing each other, hence they repel each other and therefore they will not come in contact
Answer:
v = (10 i ^ + 0j ^) m / s, a = (0i ^ - 9.8 j ^) m / s²
Explanation:
This is a missile throwing exercise.
On the x axis there is no acceleration so the velocity on the x axis is constant
v₀ₓ = 10 m / s
On the y-axis velocity is affected by the acceleration of gravity, let's use the equation
v_y =
- g t
at the highest point of the trajectory the vertical speed must be zero
v_y = 0
therefore the velocity of the body is
v = (10 i ^ + 0j ^) m / s
the acceleration is
a = (0 i ^ - g j⁾
a = (0i ^ - 9.8 j ^) m / s²
Conduction: someone burning their hand by placing their hand on a hot stove.
Convection: Food cooking in an oven.
Radiation: The heat we feel from the sun.