B. At the equator
Explanation:
The energy coming from the Sun hits the Earth's surface at different angles, depending on the latitude of the place. The more perpendicular the ray of lights hit the surface, the more the energy transmitted to the Earth's surface, the warmer the location.
The angle at which the ray of lights hit the Earth is related to the latitude: in particular, the ray of lights arrive perpendicular at the equator (
), they arrive at larger angle in the United States (which is located at intermediate latitudes) and they arrive at the largest angles at the poles. For this reason, the sun's most energy is concentrated at the equator.
Not pushing yourself hard enough is the answer since your heart rate doesn't even hit your lower minimum.
Pushing yourself to the limit is at your max heart rate.
Just at the right spot is at your max heart rate.
Pushing yourself too hard is above your max heart rate.
Explanation:
(a) After the engines stop, the rocket reaches a maximum height at which it will stop and begin to descend in free fall due to gravity.
(b) We must separate the motion into two parts, when the rocket's engines is on and when the rocket's engines is off.
First we must find the rocket speed when the engines stop:

This final speed is the initial speed in the second part of the motion, when engines stop until reach its maximun height. Therefore, in this part the final speed its zero and the value of g its negative, since decelerates the rocket:

So, the maximum height reached by the rocket is:

(c) In the first part we have:

And in the second part:

So, the time it takes to reach the maximum height is:

(d) We already know the time between the liftoff and the maximum height, we must find the rocket's time between the maximum height and the ground, therefore, is a free fall motion:


So, the total time is:

Answer:
I think option B 0.125
Explanation:
but i am not sure so don't mind