1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
3 years ago
14

A model rocket is launched straight upward with an initial speed of 52.0 m/s. It accelerates with a constant upward acceleration

of 1.00 m/s2 until its engines stop at an altitude of 160 m.
(a) What can you say about the motion of the rocket after its engines stop? This answer has not been graded yet.
(b) What is the maximum height reached by the rocket? m
(c) How long after liftoff does the rocket reach its maximum height? s
(d) How long is the rocket in the air? s
Physics
1 answer:
JulsSmile [24]3 years ago
7 0

Explanation:

(a) After the engines stop, the rocket reaches a maximum height at which it will stop and begin to descend in free fall due to gravity.

(b) We must separate the motion into two parts, when the rocket's engines is on  and when the rocket's engines is off.

First we must find the rocket speed when the engines stop:

v_f^2=v_0^2+2ay_1\\v_f^2=(52\frac{m}{s})^2+2(1\frac{m}{s^2})(160m)\\v_f^2=3024\frac{m^2}{s^2}\\v_f=\sqrt{3024\frac{m^2}{s^2}}=54.99\frac{m}{s}

This final speed is the initial speed in the second part of the motion, when engines stop until reach its maximun height. Therefore, in this part the final speed its zero and the value of g its negative, since decelerates the rocket:

v_f^2=v_0^2+2gy_{2}\\y_{2}=\frac{v_f^2-v_0^2}{2g}\\y_{2}=\frac{0^2-(54.99\frac{m}{s})^2}{2(-9.8\frac{m}{s^2})}=154.28m

So, the maximum height reached by the rocket is:

h=y_1+y_2\\h=160m+154.28m=314.28m

(c) In the first part we have:

v_f=v_0+at_1\\t_1=\frac{v_f-v_0}{a}\\t_1=\frac{54.99\frac{m}{s}-52\frac{m}{s}}{1\frac{m}{s^2}}\\t_1=2.99s

And in the second part:

t_2=\frac{v_f-v_0}{g}\\t_2=\frac{0-54.99\frac{m}{s}}{-9.8\frac{m}{s^2}}\\t_2=5.61s

So,  the time it takes to reach the maximum height is:

t_3=t_1+t_2\\t_3=2.99s+5.61s=8.60s

(d) We already know the time between the liftoff and the maximum height, we must find the rocket's time between the maximum height and the ground, therefore, is a free fall motion:

v_f^2=v_0^2+2ay\\v_f^2=0^2+2(9.8\frac{m}{s^2})(314.28m)\\v_f=\sqrt{6159.888\frac{m^2}{s^2}}=78.48\frac{m}{s}

t_4=\frac{v_f-v_0}{g}\\t_4=\frac{78.48\frac{m}{s}-0}{9.8\frac{m}{s^2}}\\t_4=8.01s

So, the total time is:

t=t_3+t_4\\t=8.60s+8.01s\\t=16.61s

You might be interested in
If you place bean seeds between moist paper towels and watch the stems and leaves appears,you will see a demonstration of??
Alenkinab [10]
<span>Germination Germination is the procedure of seeds forming into new plants. To start with, ecological conditions must trigger the seed to develop. For the most part, this is controlled by how profound the seed is planted, water accessibility, and temperature. At the point when water is abundant, the seed loads with water in a procedure called imbibition.</span>
7 0
3 years ago
The Atomic number tells us the number of ____ in an atom.
yawa3891 [41]

Answer:

Protons

Explanation:

5 0
3 years ago
Read 2 more answers
A mass moves back and forth in simple harmonic motion with amplitude A and period T.
Sever21 [200]

a. 0.5 T

- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position

- The period T is the time the system takes to complete one oscillation

During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.

So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion

1 T : 4 A = t : 2 A

and solving for t we find

t=\frac{(1T)(2 A)}{4A}=0.5 T

b. 1.25T

Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that

- the mass takes a time of 1 T to cover a distance of 4A

we can set the following proportion:

1 T : 4 A = t : 5 A

And by solving for t, we find

t=\frac{(1T)(5 A)}{4A}=\frac{5}{4} T=1.25 T

6 0
3 years ago
The rock cycle _____.
Reika [66]
B is the answer you need and i honestly got this question on a middle school test

you must be in different area then me

4 0
3 years ago
Read 2 more answers
A cook had a jar containing a sweet food and a jar containing a sour food. The sweet food has a strong attraction between its mo
patriot [66]

Answer:

The sweet food changed because the molecules were able to move fast enough to overcome the attraction between them with its molecules now moving away from each other.

Explanation:

We are told that the sweet food has a strong attraction between its molecules, and the sour food has a weak attraction between its molecules.

This means that the molecules in the sweet food would be moving at a faster rate than in the sour food because of the strong forces of attraction. Therefore, the molecules in the sweet food would be moving far away from each other hence the change of phase.

7 0
3 years ago
Other questions:
  • A certain rigid aluminum container contains a liquid at a gauge pressure of P0 = 2.02 × 105 Pa at sea level where the atmospheri
    13·1 answer
  • Study this equation carefully. What classification should this reaction have? Cu + 2AgNO3 Cu(NO3)2 + 2Ag synthesis decomposition
    10·2 answers
  • Which formula represents Charles’s law? P1V1 = P2V2 V1T1 = V2T2
    7·2 answers
  • A farmer pulls on his obstinate mule with 250 N of force to the right. The ground exerts a reaction force to the mule’s resistan
    11·1 answer
  • A plane has a cruising speed of 250 miles per hour when there is no wind. at this speed, the plane flew 300 miles with the wind
    11·1 answer
  • Analyze how buffers allow you to eat acidic and basic foods without changing your blood pH.
    14·1 answer
  • Now, a second resistor R2 of 3.3 105 Ω is connected in parallel to the existing resistor in the circuit, and a second capacitor
    13·1 answer
  • HELP!! Explain why a more streamlined car generally will have a better fuel economy than a bulkier car with the same mass.
    12·2 answers
  • The potential energy for a mass on a spring is proportional to the square of which of these quantities?
    7·1 answer
  • Spurs"" are probably the result of ____.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!