1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
3 years ago
14

A model rocket is launched straight upward with an initial speed of 52.0 m/s. It accelerates with a constant upward acceleration

of 1.00 m/s2 until its engines stop at an altitude of 160 m.
(a) What can you say about the motion of the rocket after its engines stop? This answer has not been graded yet.
(b) What is the maximum height reached by the rocket? m
(c) How long after liftoff does the rocket reach its maximum height? s
(d) How long is the rocket in the air? s
Physics
1 answer:
JulsSmile [24]3 years ago
7 0

Explanation:

(a) After the engines stop, the rocket reaches a maximum height at which it will stop and begin to descend in free fall due to gravity.

(b) We must separate the motion into two parts, when the rocket's engines is on  and when the rocket's engines is off.

First we must find the rocket speed when the engines stop:

v_f^2=v_0^2+2ay_1\\v_f^2=(52\frac{m}{s})^2+2(1\frac{m}{s^2})(160m)\\v_f^2=3024\frac{m^2}{s^2}\\v_f=\sqrt{3024\frac{m^2}{s^2}}=54.99\frac{m}{s}

This final speed is the initial speed in the second part of the motion, when engines stop until reach its maximun height. Therefore, in this part the final speed its zero and the value of g its negative, since decelerates the rocket:

v_f^2=v_0^2+2gy_{2}\\y_{2}=\frac{v_f^2-v_0^2}{2g}\\y_{2}=\frac{0^2-(54.99\frac{m}{s})^2}{2(-9.8\frac{m}{s^2})}=154.28m

So, the maximum height reached by the rocket is:

h=y_1+y_2\\h=160m+154.28m=314.28m

(c) In the first part we have:

v_f=v_0+at_1\\t_1=\frac{v_f-v_0}{a}\\t_1=\frac{54.99\frac{m}{s}-52\frac{m}{s}}{1\frac{m}{s^2}}\\t_1=2.99s

And in the second part:

t_2=\frac{v_f-v_0}{g}\\t_2=\frac{0-54.99\frac{m}{s}}{-9.8\frac{m}{s^2}}\\t_2=5.61s

So,  the time it takes to reach the maximum height is:

t_3=t_1+t_2\\t_3=2.99s+5.61s=8.60s

(d) We already know the time between the liftoff and the maximum height, we must find the rocket's time between the maximum height and the ground, therefore, is a free fall motion:

v_f^2=v_0^2+2ay\\v_f^2=0^2+2(9.8\frac{m}{s^2})(314.28m)\\v_f=\sqrt{6159.888\frac{m^2}{s^2}}=78.48\frac{m}{s}

t_4=\frac{v_f-v_0}{g}\\t_4=\frac{78.48\frac{m}{s}-0}{9.8\frac{m}{s^2}}\\t_4=8.01s

So, the total time is:

t=t_3+t_4\\t=8.60s+8.01s\\t=16.61s

You might be interested in
A large balloon of mass 210 kg is filled with helium gas until its volume is 329 m3. Assume the density of air is 1.29 kg/m3 and
Nastasia [14]

(a) See figure in attachment (please note that the image should be rotated by 90 degrees clockwise)

There are only two forces acting on the balloon, if we neglect air resistance:

- The weight of the balloon, labelled with W, whose magnitude is

W=mg

where m is the mass of the balloon+the helium gas inside and g is the acceleration due to gravity, and whose direction is downward

- The Buoyant force, labelled with B, whose magnitude is

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity, and where the direction is upward

(b) 4159 N

The buoyant force is given by

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity.

In this case we have

\rho_a = 1.29 kg/m^3 is the air density

V=329 m^3 is the volume of the balloon

g = 9.8 m/s^2 is the acceleration due to gravity

So the buoyant force is

B=(1.29 kg/m^3)(329 m^3)(9.8 m/s^2)=4159 N

(c) 1524 N

The mass of the helium gas inside the balloon is

m_h=\rho_h V=(0.179 kg/m^3)(329 m^3)=59 kg

where \rho_h is the helium density; so we the total mass of the balloon+helium gas inside is

m=m_h+m_b=59 kg+210 kg=269 kg

So now we can find the weight of the balloon:

W=mg=(269 kg)(9.8 m/s^2)=2635 N

And so, the net force on the balloon is

F=B-W=4159 N-2635 N=1524 N

(d) The balloon will rise

Explanation: we said that there are only two forces acting on the balloon: the buoyant force, upward, and the weight, downward. Since the magnitude of the buoyant force is larger than the magnitude of the weigth, this means that the net force on the balloon points upward, so according to Newton's second law, the balloon will have an acceleration pointing upward, so it will rise.

(e) 155 kg

The maximum additional mass that the balloon can support in equilibrium can be found by requiring that the buoyant force is equal to the new weight of the balloon:

W'=(m'+m)g=B

where m' is the additional mass. Re-arranging the equation for m', we find

m'=\frac{B}{g}-m=\frac{4159 N}{9.8 m/s^2}-269 kg=155 kg

(f) The balloon and its load will accelerate upward.

If the mass of the load is less than the value calculated in the previous part (155 kg), the balloon will accelerate upward, because the buoyant force will still be larger than the weight of the balloon, so the net force will still be pointing upward.

(g) The decrease in air density as the altitude increases

As the balloon rises and goes higher, the density of the air in the atmosphere decreases. As a result, the buoyant force that pushes the balloon upward will decrease, according to the formula

B=\rho_a V g

So, at a certain altitude h, the buoyant force will be no longer greater than the weight of the balloon, therefore the net force will become zero and the balloon will no longer rise.

4 0
3 years ago
If you speed up from rest to 12m/s in 3 seconds, what is your acceleration?
boyakko [2]


b) 4m/s/s

This is because you divide the speed you reach, by the time it takes to get to that speed:

12m/s ÷ 3s = 4m/s/s

The units come from what you divide, meters per second ÷ seconds this can be written as m/s/s or ms-² 

6 0
3 years ago
Read 2 more answers
A small balloon is released at a point 150 feet away from an observer, who is on level ground. If the balloon goes straight up a
Elza [17]

Answer:

\dfrac{dz}{dt}=0.65\ ft/s

Explanation:

Given that

x= 150 ft

\dfrac{dy}{dt}= 7\ ft/s

y= 14 ft

From the diagram

z^2=x^2+y^2

When ,x= 150 ft and y= 14 ft

z^2=150^2+14^2

z=\sqrt{150^2+15^2}

z=150.74 ft

z^2=x^2+y^2

By differentiating with respect to time t

2z\dfrac{dz}{dt}= 2x\dfrac{dx}{dt}+2y\dfrac{dy}{dt}

z\dfrac{dz}{dt}= x\dfrac{dx}{dt}+y\dfrac{dy}{dt}

Here x is constant that is why

\dfrac{dx}{dt}=0

z\dfrac{dz}{dt}= y\dfrac{dy}{dt}

Now by putting the values in the above equation we get

150.74\times \dfrac{dz}{dt}=14\times 7

\dfrac{dz}{dt}=\dfrac{14\times 7}{150.74}\ ft/s

\dfrac{dz}{dt}=0.65\ ft/s

Therefore the distance between balloon and observer increasing with 0.65 ft/s.

5 0
3 years ago
What makes up a atom
Licemer1 [7]

Answer:

They're typically made up of three main parts: protons, neutrons and electrons. Think of the protons and neutrons as together forming a “sun”, or nucleus, at the centre of the system. The electrons orbit this nucleus, like planets. If atoms are impossibly small, these subatomic particles are even more so.

Explanation:

hope i helped.

6 0
3 years ago
Read 2 more answers
WILL GIVE YOU BRAINLIST IF YOU ANSWER Which of the following characteristics of the Arctic rabbit is specifically an adaptation
andrew-mc [135]

Answer:

Hold active layer of soil in place; act as producers in ecosystem

5 0
3 years ago
Other questions:
  • The atomic number of beryllium (Be) is 4, and the atomic number of barium (Ba) is 56. Which comparison is best supported by this
    6·1 answer
  • The Palo Verde nuclear power generator of Arizona has three reactors that have a combined generating capacity of 3.937×109 W . H
    14·1 answer
  • Water flows over a section of Niagara Falls at rate of 1.1×10^6 kg/s and falls 49.4 m. How much power is generated by the fallin
    11·1 answer
  • What momentum does a 70 kg person running 10m/s (a fast sprint) have ?
    11·1 answer
  • How much work is done using a 500 W microwave for 5 minutes
    7·1 answer
  • The gravitational pull of Jupiter is greater than the gravitational pull of Earth. How would adding a “JUPITER MODE” to the virt
    13·1 answer
  • In Hans Oersted’s experiment, why did a compass needle move when an electric current flowed through a nearby wire?
    5·2 answers
  • One of the way atoms bond with each other would be through:
    11·1 answer
  • A scientist is examining an unknown solid. which procedure would most likely help determine a chemical property of the substance
    13·1 answer
  • A bullet (m=20g) shot with a speed of 800 m/s hits an oak tree and sticks 4cm inside it.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!