When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
The enthalpy of solution of KOH is -57.6 kJ/mol. We can calculate the heat released by the solution (Qr) of 3.66 g of KOH considering that the molar mass of KOH is 56.11 g/mol.

According to the law of conservation of energy, the sum of the heat released by the solution of KOH (Qr) and the heat absorbed by the solution (Qa) is zero.

150.0 mL of solution with a density of 1.02 g/mL were prepared. The mass (m) of the solution is:

Given the specific heat capacity of the solution (c) is 4.184 J/g・°C, we can calculate the change in the temperature (ΔT) of the solution using the following expression.

When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
Learn more: brainly.com/question/4400908
It helps them figure out more in dept about education.
Is it multiple choice or anwser or each question
Answer:
Avogadro's Law
Explanation:
The amount of moles is directly proportional to the volume of the gas under constant temperature and pressure. That is the statement of Avogadro's law. The equation is:
V1n2 = V2n1
<em>Where V is volume and n are moles of 1, initial state and 2, final state of the gas</em>
<em />
That means, right option is:
<h3>Avogadro's Law
</h3>