Answer:
Endothermic reaction chemical equation
Reactnt A + Reactant B + Heat (energy) ⇒ Products
Exothermic reaction chemical equation
Reactnt A + Reactant B ⇒ Products + Heat (energy)
Explanation:
Endothermic Reaction
An endothermic reaction is a reaction that reaction that requires heat before it would take place resulting in the absorption of heat from the surrounding that can be sensed by the coolness of the reacting system
An example of an endothermic reaction is a chemical cold pack that becomes cold when the chemical and water inside it reacts
Exothermic Reaction
An exothermic reaction is one that rekeases energy to the surroundings when it takes place. This is as a result of the fact that the combined heat energy of the reactants is more than the chemical heat energy of the products. An example of an exothermic reaction is a burning candle
Answer:
............................................................................
Explanation:
Answer:
336.6 grams of CO₂ and 183.6 grams of H₂O are formed from 2.55 moles of propane.
Explanation:
In this case, the balanced reaction is:
C₃H₈ + 5 O₂ → 3 CO₂ + 4 H₂O
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of reactant and product participate in the reaction:
- C₃H₈: 1 mole
- O₂: 5 moles
- CO₂: 3 moles
- H₂O: 4 moles
Being the molar mass of each compound:
- C₃H₈: 44 g/mole
- O₂: 16 g/mole
- CO₂: 44 g/mole
- H₂O: 18 g/mole
Then, by stoichiometry, the following quantities of mass participate in the reaction:
- C₃H₈: 1 mole* 44 g/mole= 44 grams
- O₂: 5 moles* 16 g/mole= 80 grams
- CO₂: 3 moles* 44 g/mole= 132 grams
- H₂O: 4 moles* 18 g/mole= 72 grams
So you can apply the following rules of three:
- If by stoichiometry 1 mole of C₃H₈ forms 132 grams of CO₂, 2.55 moles of C₃H₈ how much mass of CO₂ will it form?

mass of CO₂= 336.6 grams
- If by stoichiometry 1 mole of C₃H₈ forms 72 grams of H₂O, 2.55 moles of C₃H₈ how much mass of H₂O will it form?

mass of H₂O= 183.6 grams
<u><em>336.6 grams of CO₂ and 183.6 grams of H₂O are formed from 2.55 moles of propane.</em></u>
Answer:
13 mol NO
Explanation:
Step 1: Write the balanced equation
4 NH₃(g) + 5 O₂(g) ⇒ 4 NO(g) + 6 H₂O(g)
Step 2: Establish the appropriate molar ratio
According to the balanced equation, the molar ratio of O₂ to NO is 5:4.
Step 3: Calculate the number of moles of O₂ needed to produce 16 moles of NO
We will use the previously established molar ratio.
16 mol O₂ × 4 mol NO/5 mol O₂ = 13 mol NO
Answer:
0.0457 M
Explanation:
The reaction that takes place is:
- 2HBr + Ca(OH)₂ → CaBr₂ + 2H₂O
First we<u> calculate how many moles of acid reacted</u>, using the <em>HBr solution's concentration and volume</em>:
- Molarity = Moles / Volume
- Molarity * Volume = Moles
- 0.112 M * 12.4 mL = 1.389 mmol HBr
Now we <u>convert HBr moles to Ca(OH)₂ moles</u>, using the stoichiometric ratio:
- 1.389 mmol HBr *
= 0.6944 mmol Ca(OH)₂
Finally we <u>calculate the molarity of the Ca(OH)₂ solution</u>, using the <em>given volume and calculated moles</em>:
- 0.6944 mmol Ca(OH)₂ / 15.2 mL = 0.0457 M