Answer:
4.24nm
0.385eV
Explanation:
Maximum wavelength (λmax) :
λmax = ( hc) /Φ
h = plancks constant = 6.63 * 10^-34
c = speed of light = 3*10^8
1ev = 1.6 * 10^-19
Φ = 2.93eV = 2.93* (1.6*10^-19) = 4.688*10^-19
λmax = [(6.63 * 10^-34) * (3 * 10^8)] / 4.688*10^-19
λmax = 19.89 * 10^-26 / 4.688*10^-19
λmax = 4.242 * 10^-7 m
λmax= 4.24nm
B.)
E = hc / eλ eV
λ = 3.75nm = 3.75 * 10^-7m = 375 *10^-9
E = (6.63 * 10^-34) * (3 * 10^8) / (1.6 * 10^-19) * (375 * 10^-9)
E = 19.89 * 10^-26 / 600 * 10^-28
E = 0.03315 * 10^-26 + 28
E = 0.03315 * 10^2
E = 3.315 eV
Stopping potential : (3.315 eV - 2.93eV) = 0.385eV
Answer:
Magnetic field, 
Explanation:
It is given that,
Number of turns, N = 320
Radius of the coil, r = 6 cm = 0.06 m
The distance from the center of one coil to the electron beam is 3 cm, x = 3 cm = 0.03 m
Current flowing through the coils, I = 0.5 A
We need to find the magnitude of the magnetic field at a location on the axis of the coils, midway between the coils. The magnetic field midway between the coils is given by :


B = 0.00239 T
or

So, the magnitude of the magnetic field at a location on the axis of the coils, midway between the coils is
. Hence, this is the required solution.
Answer:
Mass.
Explanation:
I took the quiz and got the answer right
Answer:
The correct option is;
D. There is not enough information to answer this question
Explanation:
The universal gravitational constant = 6.67408 × 10⁻¹¹ 3³/(kg·s²)
For an in between distance of 1 m and equal masses of 60 kg, we have;

The gravitational attraction ≈ 2.403 × 10⁻⁷ N, which does not correspond with the answers, therefore, the best option is that there is not enough information to answer this question.
The are elements on the periodic table