Answer:
–77867 m/s/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
Acceleration is simply defined as the rate of change of velocity with time. Mathematically, it is expressed as:
Acceleration = (final velocity – Initial velocity) /time
a = (v – u) / t
With the above formula, we can obtain acceleration of the ball as follow:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
a = (v – u) / t
a = (–23.9 – 34.5) / 0.00075
a = –58.4 / 0.00075
a = –77867 m/s/s
Thus, the acceleration of the ball is –77867 m/s/s.
Answer:
pplications of Pascal’s Law
Hydraulic Lift: The image you saw at the beginning of this article is a simple line diagram of a hydraulic lift. This is...
The construction is such that a narrow cylinder (in this case A) is connected to a wider cylinder (in this case B). They...
Pressure applied at piston A is transmitted equally to piston B without diminishing, on use of an incompressible fluid.
Explanation:
The normal reaction between the television and the table is
N = 12 × 9.8 m/s² = 117.6 Newtons
But the static coefficient of friction is μ = 0.83
When the television is about to slide on the table, the applied force should overcome the force due to static friction;
Thus; the applied force should be at least
F = μN
= 0.83 × 117.6 N
= 97.608 Newtons
Therefore; the minimum applied force will be 97.6 Newtons.
Explanation:
Minimum of aerobic activity 150 minutes, or a mix of moderates and intensive exercise 75 minutes of vigorous aerobic activity a week. We can extend this practice throughout the week with the instructions. Mild aerobic workouts might include practices like quick strolling or swimming, while activity like running can include strong aerobic activity.
Answer:
U = initial velocity, t = time taken, s = distance covered. Deceleration Formula is used to calculate the deceleration of the given body in motion.