It is important to use the same balance throughout the entire experiment since the calibration of each balance is not the same and changing balances could result in a systematic error.
There are three types of errors that could affect the results of the experiment. The effect of random or indeterminate errors is hard to predict, its effect on the results of the experiment could be different every time. The second type of error is the systematic or determinate error, which causes a shift in results in a specific direction. The last type of error in an experiment is human error.
The type of error that could be related to the use of different balances throughout the experiment is the systematic error. Instruments could be a source of error especially if they are poorly calibrated. Also, analytical balances are calibrated differently which may result in inaccuracy in the weighing of chemicals.
To learn more, please refer to brainly.com/question/11541675.
#SPJ4
<h3>
Answer:</h3>
A. 860 kg
<h3>
Explanation:</h3>
To answer the question we need to understand that;
- Mass refers to the amount of matter in an object.
- Weight, on the other hand, refers to the gravitational pull of an object to a given surface.
- Mass is measured using a spring balance.
We also need to know that;
- The mass of an object remains constant every where irrespective of the gravitational acceleration.
- Therefore, an object on the surface of the earth would have the same mass as on the surface of the moon.
- In this case; the mass of the car remains the same on the outer space as on the back yard.
This would be 1.22 x 10^1
You simply move the decimal.
If this helped you, please list me as brainliest!
The question is incomplete, here is the complete question:
A chemist measures the amount of bromine liquid produced during an experiment. She finds that 766.g of bromine liquid is produced. Calculate the number of moles of bromine liquid produced. Round your answer to 3 significant digits.
<u>Answer:</u> The amount of liquid bromine produced is 4.79 moles.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

We are given:
Given mass of liquid bromine = 766. g
Molar mass of liquid bromine,
= 159.8 g/mol
Putting values in above equation, we get:

Hence, the amount of liquid bromine produced is 4.79 moles.