Depression of a freezing point of the solutions depends on the number of particles of the solute in the solution.
1 mol of C6H12O6 after dissolving in water still be 1 mol, because C6H12O6 does no dissociate in water.
1 mol of C2H5OH after dissolving in water still be 1 mol, because C2H5OH does no dissociate in water.
1 mol of NaCl after dissolving in water gives 2 mol of particles (ions), because NaCl is a strong electrolyte(as salt) and completely dissociates in water.
NaCl ----->Na⁺ + Cl⁻
1 mol of CH3COOH after dissolving in water gives more than 1 mol but less than 2 moles, because CH3COOH is a weak electrolyte (weak acid) and dissociates only partially.
So, most particles of the solute is going to be in the solution of NaCl,
so<span> the lowest freezing point has the aqueous solution of NaCl.</span>
Hey there!
500 mg of protein is present in 100 mL of solvent as per the concentration 0.5 mg/mL or 500 g/mL ,
So, 250 mg (0.25 g) of serving food need to be added to 100 mL solvent in order to prepare 50 mg of protein/100 mL solution.
Dilution factor = initial amount of protein / final amount of protein
= 6 g / 0.05 g = 120
Hope this helps!
Answer:
MgCl2 = 24 + 2(35.5)
= 95
mass of substance = mol × molar mass
= 0.119 × 95
= 11.305 g
D. All of the above are indicators of chemical change
Answer:
The equilibrium constant in terms of concentration that is,
.
Explanation:

The relation of
is given by:

= Equilibrium constant in terms of partial pressure.=98.1
= Equilibrium constant in terms of concentration =?
T = temperature at which the equilibrium reaction is taking place.
R = universal gas constant
= Difference between gaseous moles on product side and reactant side=



The equilibrium constant in terms of concentration that is,
.