Answer:
I haven done that in a hot minute. jeezzz
Step-by-step explanation:
Answer:
I think it is C-D.
Step-by-step explanation:
Answer:
Methods of obtaining a sample of 600 employees from the 4,700 workforce:
Part A: The type of sampling method proposed by the CEO is Convenience Sampling.
Part B: When there are equal number of participants in both campuses, stratification by campus would give a more precise approximation of the proportion of employees who are satisfied with the cleanliness of the breakrooms than stratification by gender. Another method to ensure that stratification by campus gives a more precise approximation of the proportion of employees who are satisfied with the cleanliness of the breakrooms than stratification by gender is to ensure that the sample is proportional to the proportion of each campus to the whole population or workforce.
Step-by-step explanation:
A Convenience Sampling technique is a non-probability (non-random) sampling method and the participants are selected based on availability (early attendees). The early attendees might be different from the late attendees in characteristics such as age, sex, etc. Therefore, sampling biases are present. All non-probability sampling methods are prone to volunteer bias.
Stratified sampling is more accurate and representative of the population. It reduces sampling bias. The difficulty arises in choosing the characteristic to stratify by.
Answer:
The minimum sample size needed is 125.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error is:

For this problem, we have that:

99% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
What minimum sample size would be necessary in order ensure a margin of error of 10 percentage points (or less) if they use the prior estimate that 25 percent of the pick-axes are in need of repair?
This minimum sample size is n.
n is found when 
So






Rounding up
The minimum sample size needed is 125.
Answer:
Slope=−
2.000
1.600
=−0.800
x−intercept=
4
15
=3.75000
y−intercept=
5
15
=3
Step-by-step explanation: