The answer is false
Iron and nickel is more dense
Answer:
The answer to your question is 3 ml
Explanation:
Data
Dosage = 9.0 mg/ kg
Child's weight = 42.9 pounds
Suspension = 60 mg/ml
milliliters = ?
Process
1.- Convert the weight to kg
1 pound ------------------- 0.453 kg
42.9 pounds --------------- x
x = (42.9 x 0.453) / 1
x = 19.43 kg
2.- Calculate the milligrams the child needs
1 kg of weight ------------ 9 mg
19.43 kg ---------------------- x
x = (19.43 x 9) / 1
x = 174.87 mg of oxcarbazepine
3.- Calculate the milliliters needed
60 mg of suspension ------------- 1 milliliters
174.87 mg -------------- x
x = (174.87 x 1) / 60
x = 2.9 ml ≈ 3 ml
Helium is a chemical ELEMENT of the family of noble gases. Its chemical symbol is 'He' which has an atomic number of 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas, the first in the noble gas group in the periodic table. Although it doesn't really react under normal conditions, it is the second most abundant element in the universe.
Elements are pure substances that cannot be broken down any further.
When it comes to equilibrium reactions, it useful to do ICE analysis. ICE stands for Initial-Change-Equilibrium. You subtract the initial and change to determine the equilibrium amounts which is the basis for Kc. Kc is the equilibrium constant of concentration which is just the ratio of products to reactant.
Let's do the ICE analysis
2 NH₃ ⇄ N₂ + 3 H₂
I 0 1.3 1.65
C +2x -x -3x
-------------------------------------
E 0.1 ? ?
The variable x is the amount of moles of the substances that reacted. You apply the stoichiometric coefficients by multiplying it by x. Now, we can solve x by:
Equilibrium NH₃ = 0.1 = 0 + 2x
x = 0.05 mol
Therefore,
Equilibrium H₂ = 1.65 - 3(0.05) = 1.5 molEquilibrium N₂ = 1..3 - 0.05 = 1.25 mol
For the second part, I am confused with the given reaction because the stoichiometric coefficients do not balance which violates the law of conservation of mass. But you should remember that the Kc values might differ because of the stoichiometric coefficient. For a reaction: aA + bB ⇄ cC, the Kc for this is
![K_{C} = \frac{[ C^{c} ]}{[ A^{a} ][ B^{b} ]}](https://tex.z-dn.net/?f=%20K_%7BC%7D%20%3D%20%5Cfrac%7B%5B%20C%5E%7Bc%7D%20%5D%7D%7B%5B%20A%5E%7Ba%7D%20%5D%5B%20B%5E%7Bb%7D%20%5D%7D%20)
Hence, Kc could vary depending on the stoichiometric coefficients of the reaction.